Тема: Защита информации. Лекция по информатике "защита информации" Защита информации кратко

Тема: Защита информации. Лекция по информатике
Тема: Защита информации. Лекция по информатике "защита информации" Защита информации кратко

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН
МНОГОПРОФИЛЬНЫЙ ГУМАНИТАРНО-ТЕХНИЧЕСКИЙ КОЛЛЕДЖ

Реферат
на тему «Защита информации»

Выполнил студент
группы 3ИС-2с:
Проверил:

Караганда 2014
План
Введение…………………………………………………………………………………...2
Глава I Проблемы защиты информации человеком и обществом…………………….5
1.1 Вирусы характеристика классификация…………………………………………….5
1.2 Несанкционированный доступ……………………………………………………….8
1.3 Проблемы защиты информации Интернете…………………………………………9
Глава II Сравнительный анализ и характеристики способов защиты информации...12
2.1 Защита от вирусов…………………………………………………………………...12
Сводная таблица некоторых антивирусных программ………………………………..16
2.2 Защита информации в Интернете………………………………………………..17
2.3 Защита от несанкционированного доступа……………………………………….19
2.4 Правовая защита информации…………………………………………………...21
Заключение……………………………………………………………………………….24
Список используемой литературы……………………………………………………...25

Введение
Человеческое общество по мере своего развития прошло этапы овладения веществом, затем энергией и, наконец, информацией. В первобытно-общинном, рабовладельческом и феодальном обществах деятельность общества в целом и каждого человека в отдельности была направлена, в первую очередь. На овладение веществом.
На заре цивилизации люди научились изготавливать простые орудия труда и охоты, в античности появились первые механизмы и средства передвижения. В средние века были изобретены первые сложные орудия труда и механизмы.
Овладение энергией находилось в этот период на начальной ступени, в качестве источников энергии использовались Солнце, вода, огонь, ветер и мускульная сила человека.
С самого начала человеческой истории возникла потребность передачи и хранения информации.
Начиная примерно с XVII века, в процессе становления машинного производства на первый план выходит проблема овладения энергией. Сначала совершенствовались способы овладения энергией ветра и воды, а затем человечество овладело тепловой энергией.
В конце XIX века началось овладение электрической энергией, были изобретены электрогенератор и электродвигатель. И наконец, в середине XX века человечество овладело атомной энергией, в 1954 году в СССР была пущена в эксплуатацию первая атомная электростанция.
Овладение энергией позволило перейти к массовому машинному производству потребительских товаров. Было создано индустриальное общество. В этот период происходили также существенные изменения в способах хранения и передачи информации.
В информационном обществе главным ресурсом является информация. Именно на основе владения информацией о самых различных процессах и явлениях можно эффективно и оптимально строить любую деятельность.
Важно не только произвести большое количество продукции, но произвести нужную продукцию в определённое время. С определёнными затратами и так далее. Поэтому в информационном обществе повышается не только качество потребления, но и качество производства; человек, использующий информационные технологии, имеет лучшие условия труда, труд становится творческим, интеллектуальным и так далее.
В настоящее время развитые страны мира (США, Япония, страны Западной Европы) фактически уже вступили в информационное общество. Другие же, в том числе и Россия, находятся на ближних подступах к нему.
В качестве критериев развитости информационного общества можно выбрать три: наличие компьютеров, уровень развития компьютерных сетей и количество населения, занятого в информационной сфере, а также использующего информационные и коммуникационные технологии в своей повседневной деятельности.
Информация сегодня стоит дорого и её необходимо охранять. Массовое применение персональных компьютеров, к сожалению, оказалось связанным с появлением самовоспроизводящихся программ-вирусов, препятствующих нормальной работе компьютера, разрушающих файловую структуру дисков и наносящих ущерб хранимой в компьютере информации.
Информацией владеют и используют её все люди без исключения. Каждый человек решает для себя, какую информацию ему необходимо получить, какая информация не должна быть доступна другим и т.д. Человеку легко, хранить информацию, которая у него в голове, а как быть, если информация занесена в «мозг машины», к которой имеют доступ многие люди.
Для предотвращения потери информации разрабатываются различные механизмы её защиты, которые используются на всех этапах работы с ней. Защищать от повреждений и внешних воздействий надо и устройства, на которых хранится секретная и важная информация, и каналы связи.
Повреждения могут быть вызваны поломкой оборудования или канала связи, подделкой или разглашением секретной информации. Внешние воздействия возникают как в результате стихийных бедствий, так и в результате сбоев оборудования или кражи.
Для сохранения информации используют различные способы защиты:
безопасность зданий, где хранится секретная информация;
контроль доступа к секретной информации;
разграничение доступа;
дублирование каналов связи и подключение резервных устройств;
криптографические преобразования информации;
А от чего, и от кого её надо защищать? И как это правильно сделать?
То, что эти вопросы возникают, говорит о том, что тема в настоящее время актуальна.
Цель данной работы является выявление источников угрозы информации и определение способов защиты от них.
Задачи:
выявить основные источники угрозы информации;
описать способы защиты;
рассмотреть правовую сторону информационной безопасности;

Глава II Сравнительный анализ и характеристики способов защиты информации.
2.1 Защита от вирусов.
МЕТОДЫ ЗАЩИТЫ ОТ КОМПЬЮТЕРНЫХ ВИРУСОВ
Каким бы не был вирус, пользователю необходимо знать основные методы защиты от компьютерных вирусов.
Для защиты от вирусов можно использовать:
* общие средства защиты информации, которые полезны также и как страховка от порчи дисков, неправильно работающих программ или ошибочных действий пользователя;
* профилактические меры, позволяющие уменьшить вероятность заражения вирусов;
* специальные программы для защиты от вирусов.
Общие средства защиты информации полезны не только для защиты от вирусов. Имеются две основные разновидности этих средств:
* копирование информации - создание копий файлов и системных областей диска;
* средства разграничения доступа предотвращает несанкционированное использование информации, в частности, защиту от изменений программ и данных вирусами, неправильно работающими программами и ошибочными действиями пользователя.
Общие средства защиты информации очень важны для защиты от вирусов, все же их недостаточно. Необходимо и применение специализированных программ для защиты от вирусов. Эти программы можно разделить на несколько видов: детекторы, доктора (фаги), ревизоры, доктора-ревизоры, фильтры и вакцины (иммунизаторы).
-ДЕТЕКТОРЫ позволяют обнаруживать файлы, зараженные одним из нескольких известных вирусов. Эти программы проверяют, имеется ли в файлах на указанном пользователем диске специфическая для данного вируса комбинация байтов. При ее обнаружении в каком-либо файле на экран выводится соответствующее сообщение.
Многие детекторы имеют режимы лечения или уничтожения зараженных файлов.
Следует подчеркнуть, что программы-детекторы могут обнаруживать только те вирусы, которые ей "известны". Программа Scan
McAfeeAssociates и Aidstest позволяют обнаруживать всего несколько тысяч вирусов, но всего их более 80 тысяч! Некоторые программы-детекторы, например NortonAntiVirus или AVSP, могут настраивать на новые типы вирусов, им необходимо лишь указать комбинации байтов, присущие этим вирусам. Тем не менее, невозможно разработать такую программу, которая могла бы обнаруживать любой заранее неизвестный вирус.
Таким образом, из того, что программа не опознается детекторами как зараженная, не следует, что она здорова - в ней могут сидеть какой-нибудь новый вирус или слегка модифицированная версия старого вируса, неизвестные программам-детекторам.
Многие программы-детекторы (в том числе и Aidstest) не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Дело в том, что для чтения диска они используют функции DOS, перехватываются вирусом, который говорит, что все хорошо. Правда, Aidstest и др. программы могут выявить вирус путем просмотра оперативной памяти, но против некоторых "хитрых" вирусов это не помогает. Так что надежный диагноз программы-детекторы дают только при загрузке DOS с защищенной от записи дискеты, при этом копия программы-детектора также должна быть запущена с этой дискеты.
Некоторые детекторы, скажем, ADinf "Диалог-Наука", умеют ловить "невидимые" вирусы, даже когда они активны. Для этого они читают диск, не используя вызовы DOS. Этот метод работает не на всех дисководах.
Большинство программ-детекторов имеют функцию "доктора", т.е. пытаются вернуть зараженные файлы или области диска в их исходное состояние. Те файлы, которые не удалось восстановить, как правило, делаются неработоспособными или удаляются.
Большинство программ-докторов умеют "лечить" только от некоторого фиксированного набора вирусов, поэтому они быстро устаревают. Но некоторые программы могут обучаться не только способам обнаружения, но и способам лечения новых вирусов.
К таким программам относится AVSP
"Диалог-МГУ".
ПРОГРАММЫ-РЕВИЗОРЫ имеют две стадии работы. Сначала они запоминают сведения о состоянии программ и системных областей дисков (загрузочного сектора и сектора с таблицей разбиения жесткого диска). Предполагается, что в этот момент программы и системные области дисков не заражены. После этого с помощью программы-ревизора можно в любой момент сравнить состояние программ и системных областей дисков с исходным. О выявленных несоответствиях сообщается пользователю.
Чтобы проверка состояния программ и дисков проходила при каждой загрузке операционной системы, необходимо включить команду запуска программы-ревизора в командный файл AUTOEXEC.BAT. Это позволяет обнаружить заражение компьютерным вирусом, когда он еще не успел нанести большого вреда. Более того, та же программа-ревизор сможет найти поврежденные вирусом файлы.
Многие программы-ревизоры являются довольно "интеллектуальными" - они могут отличать изменения в файлах, вызванные, например, переходом к новой версии программы, от изменений, вносимых вирусом, и не поднимают ложной тревоги. Дело в том, что вирусы обычно изменяют файлы весьма специфическим образом и производят одинаковые изменения в разных программных файлах. Понятно, что в нормальной ситуации такие изменения практически никогда не встречаются, поэтому программа-ревизор, зафиксировав факт таких изменений, может с уверенностью сообщить, что они вызваны именно вирусом.
Следует заметить, что многие программы-ревизоры не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Но некоторые программы-ревизоры, например ADinf фи "Диалог-Наука", все же умеют делать это, не используя вызовы DOS для чтения диска (правда, они работают не на всех дисководах). Увы, против некоторых "хитрых" вирусов все это бесполезно.
Для проверки того, не изменился ли файл, некоторые программы-ревизоры проверяют длину файла. Но эта проверка недостаточна - некоторые вирусы не изменяют длину зараженных файлов. Более надежная проверка - прочесть весь файл и вычислить его контрольную сумму. Изменить файл так, чтобы его контрольная сумма осталась прежней, практически невозможно.
В последнее время появились очень полезные гибриды ревизоров и докторов, т.е. ДОКТОРА-РЕВИЗОРЫ - программы, которые не только обнаруживают изменения в файлах и системных областях дисков, но и могут в случае изменений автоматически вернуть их в исходное состояние. Такие программы могут быть гораздо более универсальными, чем программы-доктора, поскольку при лечении они используют заранее сохраненную информацию о состоянии файлов и областей дисков. Это позволяет им вылечивать
файлы даже от тех вирусов, которые не были созданы на момент написания программы.
Но они могут лечить не от всех вирусов, а только от тех, которые используют
"стандартные", известные на момент написания программы, механизмы заражения файлов.
Существуют также ПРОГРАММЫ-ФИЛЬТРЫ, которые располагаются резидентно в оперативной памяти компьютера и перехватывают те обращения к операционной системе, которые используются вирусами для размножения и нанесения вреда, и сообщают о
них пользователя. Пользователь может разрешить или запретить выполнение соответствующей операции.
Некоторые программы-фильтры не "ловят" подозрительные действия, а проверяют вызываемые на выполнение программы на наличие вирусов. Это вызывает замедление работы компьютера.
Однако преимущества использования программ-фильтров весьма значительны – они позволяют обнаружить многие вирусы на самой ранней стадии, когда вирус еще не успел размножиться и что-либо испортить. Тем самым можно свести убытки от вируса к минимуму.
ПРОГРАММЫ-ВАКЦИНЫ, или ИММУНИЗАТОРЫ, модифицируют программы и диски таким образом, что это не отражается на работе программ, но тот вирус, от которого производится вакцинация, считает эти программы или диски уже зараженными. Эти программы крайне неэффективны.
Сводная таблица некоторых антивирусных программ.

Название антивирусной программы Общие характеристики Положительные качества Недостатки
AIDSTEST Одна из самых известных антивирусных программ, совмещающие в себе функции детектора и доктора Д.Н. Лозинского. При запуске Aidstest проверяет себя оперативную память на наличие известных ему вирусов и обезвреживает их.
Может создавать отчет о работе После окончания обезвреживания вируса следует обязательно перезагрузить ЭВМ. Возможны случаи ложной тревоги, например при сжатии антивируса упаковщиком. Программа не имеет графического интерфейса, и режимы ее работы задаются с помощью ключей.

DOCTOR WEB
"Лечебная паутина" Dr.Web также, как и Aidstest относится к классу детекторов докторов, но в отличие отпослед него имеет так называемый "эвристический анализатор" - алгоритм, позволяющий обнаруживать неизвестные вирусы. Пользователь может указать программе тестировать как весь диск, так и отдельные подкаталоги или группы файлов, либо же отказаться от проверки дисков и тестировать только оперативную память.
Как и AidstestDoctorWeb может создавать отчет о работе При сканировании памяти нет стопроцентной гарантии, что "Лечебная паутина" обнаружит все вирусы, находящиеся там. Тестирование винчестера Dr.Web-ом занимает на много больше
времени, чем Aidstest-ом.
AVSP
(Anti-Virus Software Protection)
Эта программа сочетает в себе и детектор, и доктор, и ревизор, и даже имеет некоторые функции резидентного фильтра Антивирус может лечить как известные так и неизвестные вирусы. К тому же AVSP может лечить самомодифицирующиеся и Stealth-вирусы (невидимки). Очень удобна контекстная система подсказок, которая дает пояснения к каждому пункту меню. При комплексной проверке AVSP выводит также имена файлов, в которых произошли изменения, а также так называемую карту изменений Вместе с вирусами программа отключает и некоторые другие резидентные программы Останавливается на файлах, у которых странное время создания.
MicrosoftAntiVirus
Этот антивирус может работать в режимах детектора-доктора и ревизора. MSAV имеет дружественный интерфейс в стиле MS-Windows. Хорошо реализована контекстная по-
мощь: подсказка есть практически к любому пункту меню, к любой ситуации. Универсально реализован доступ к пунктам меню: для этого можно использовать клавиши управления курсором, ключевые клавиши. В главном меню можно сменить диск (Selectnewdrive), выбрать между проверкой без удаления вирусов (Detect) и с их удалением (Detect&Clean).
Серьёзным неудобством при использовании программы является то, что она сохраняет таблицы с данными о файлах не в одном файле, а разбрасывает их по всем директориям.
Advanced Diskinfo-scope ADinf относится к классу программ-ревизоров. Антивирус имеет высокую скорость работы, способен с успехом противостоять вирусам, находящимся в памяти. Он позволяет контролировать диск, читая его по секторам через BIOS и не используя системные прерывания DOS, которые может перехватить вирус. Для лечения заражённых файлов применяется модуль ADinfCureModule, не входящий в пакет ADinf и поставляющийся отдельно.

2.3 Защита информации в Интернете.
Сейчас вряд ли кому-то надо доказывать, что при подключении к Internet Вы подвергаете риску безопасность Вашей локальной сети и конфиденциальность содержащейся в ней информации. По данным CERT CoordinationCenter в 1995 году было зарегистрировано 2421 инцидентов - взломов локальных сетей и серверов. По результатам опроса, проведенного ComputerSecurityInstitute (CSI) среди 500 наиболее крупных организаций, компаний и университетов с 1991 число незаконных вторжений возросло на 48.9 %, а потери, вызванные этими атаками, оцениваются в 66 млн. долларов США.
Для предотвращения несанкционированного доступа к своим компьютерам все корпоративные и ведомственные сети, а также предприятия, использующие технологию intranet, ставят фильтры (fire-wall) между внутренней сетью и Internet, что фактически означает выход из единого адресного пространства. Еще большую безопасность даст отход от протокола TCP/IP и доступ в Internet через шлюзы.
Этот переход можно осуществлять одновременно с процессом построения всемирной информационной сети общего пользования, на базе использования сетевых компьютеров, которые с помощью сетевой карты и кабельного модема обеспечивают высокоскоростной доступ к локальному Web-серверу через сеть кабельного телевидения.
Для решения этих и других вопросов при переходе к новой архитектуре
Internet нужно предусмотреть следующее:
Во-первых, ликвидировать физическую связь между будущей Internet и корпоративными и ведомственными сетями, сохранив между ними лишь информационную связь через систему WorldWideWeb.
Во-вторых, заменить маршрутизаторы на коммутаторы, исключив обработку в узлах IP-протокола и заменив его на режим трансляции кадров Ethernet, при котором процесс коммутации сводится к простой операции сравнения MAC-адресов.
В-третьих, перейти в новое единое адресное пространство на базе физических адресов доступа к среде передачи (MAC-уровень), привязанное к географическому расположению сети, и позволяющее в рамках 48-бит создать адреса для более чем 64 триллионов независимых узлов.
Одним из наиболее распространенных механизмов защиты от интернетовских бандитов - “хакеров” является применение межсетевых экранов - брандмауэров (firewalls).
Стоит отметить, что вследствие непрофессионализма администраторов и недостатков некоторых типов брандмауэров порядка 30% взломов совершается после установки защитных систем.
Не следует думать, что все изложенное выше - “заморские диковины”. Россия уверенно догоняет другие страны по числу взломов серверов и локальных сетей и принесенному ими ущербу
Несмотря на кажущийся правовой хаос в рассматриваемой области, любая деятельность по разработке, продаже и использованию средств защиты информации регулируется множеством законодательных и нормативных документов, а все используемые системы подлежат обязательной сертификации Государственной Технической Комиссией при президенте России.

2.3 Защита от несанкционированного доступа.
Известно, что алгоритмы защиты информации (прежде всего шифрования) можно реализовать как программным, так и аппаратным методом. Рассмотрим аппаратные шифраторы: почему они считаются 6oлee надежными и обеспечивающими лучшую защиту.
Что такое аппаратный шифратор.
Аппаратный шифратор по виду и по сути представляет co6oй обычное компьютерное «железо», чаще всего это плата расширения, вставляемая в разъем ISA или PCI системной платы ПK. Бывают и другие варианты, например в виде USB­ ключа с криптографическими функциями, но мы здесь рассмотрим классический вариант - шифратор для шины PCI.
Использовать целую плату только для функций шифрования - непозволительная роскошь, поэтому производители аппаратных шифраторовобычностараются насытить их различными дополнительными возможностями, среди которых:
1. Генерация случайных чисел. Это нужно прежде всего для получения криптографических ключей. Кроме того, многие алгоритмы защиты используют их и для других целей, например алгоритм электронной подписи ГOCT P 34.10 - 2001. При каждом вычислении подписи ему необходимо новое случайное число.
2. Контроль входа на компьютер. При включении ПK устройство требует от пользователя ввести персональную информацию (например, вставить дискету с ключами). Работа будет разрешена только после того, как устройство опознает предъявленные ключи и сочтет их «своими». B противном случае придется разбирать системный блок и вынимать оттуда шифратор, чтобы загрузиться (однако, как известно, информация на ПK тоже может быть зашифрована).
3. Контроль целостности файлов операционной системы. Это не позволит злоумышленнику в ваше отсутствие изменить какие-либо данные. Шифратор хранит в себе список всех важных файлов с заранее рассчитанными для каждого контрольными суммами (или xэш­ значениями), и если при следующей загрузке не совпадет эталонная сумма, хотя 6ы одного из них, компьютер будет 6лoкиpoвaн.
Плата со всеми перечисленными возможностями называется устройством криптографической защиты данных - УKЗД.
Шифратор, выполняющий контроль входа на ПK и проверяющий целостность операционной системы, называют также «электронным замком». Понятно, что последнему не o6oйтиcь без программного обеспечения - необходима утилита, с помощью которой формируются ключи для пользователей и ведется их список для распознавания «свой/чужой». Кроме этого, требуется приложение для выбора важных файлов и расчета их контрольных сумм. Эти программы o6ычнo доступны только администратору по безопасности, который должен предварительно настроить все УKЗД для пользователей, а в случае возникновения проблем разбираться в их причинах.
Вообще, поставив на свой компьютер УKЗД, вы будете приятно удивлены уже при следующей загрузке: устройство проявится через несколько секунд после включения кнопки Power, как минимум, сообщив о себе и попросив ключи. Шифратор всегда перехватывает управление при загрузке IIK, после чего не так-то легко получить его обратно. УКЗД позволит продолжить загрузку только после всех своих проверок. Кстати, если IIK по какой-либо причине не отдаст управление шифратору, тот, немного подождав, все равно его зa6лoкиpyeт. И это также прибавит работы администратору по безопасности.
Структура шифраторов
рассмотрим теперь, из чего должно состоять УKЗД, чтобы выполнять эти непростые функции:
1. Блок управления - основной модуль шифратора, который «заведует» работой всех остальных. Обычно реализуется на базе микро - контроллера, сейчас их предлагается немало и можно выбрать подходящий. Главные характеристики: быстродействие и достаточное количество внутренних ресурсов, а также внешних портов для подключения всех необходимых модулей.
2. Контроллер системной шины ПК. Через него осуществляется основной обмен данными между УКЗД и компьютером.
3. Энергонезависимое запоминающее устройство (ЗУ) - должно быть достаточно емким (несколько мегабайт) и допускать большое число треков записи. Здесь размещается программное обеспечение микроконтроллера, которое выполняется при инициализации устройства (т. е. когда шифратор перехватывает управление при загрузке компьютера).
4. Память журнала. Также представляет собой энергонезависимое ЗУ. Это действительно еще одна флэш-микросхема. Во избежание возможных коллизий память для программ и для журнала не должна объединяться.
5. Шифропроцессор- это специализированная микросхема или микросхема программируемой логики. Собственно, он и шифрует данные.
6. Генератор случайных чисел. Обычно представляет собой устройство, дающее статистически случайный и непредсказуемый сигнал - белый шум. Это может быть, например, шумовой диод
7. Блок ввода ключевой информации. Обеспечивает защищённый приём ключей с ключевого носителя, через него также вводится идентификационная информация о пользователе, необходимая для решения вопроса «свойчужой».
8. Блок коммутаторов. Помимо перечисленных выше основных функций, УKЗД может по велению администратора безопасности ограничивать возможность работы с внешними устройствами: дисководами, CD-ROM и т.д.

2.4 Правовая защита информации
Правовая охрана программ для ЭВМ и баз данных впервые в полном объёме введена в Российской Федерации Законом РФ «О правовой охране программ для электронных вычислительных машин и баз данных», который вступил в силу в 1992 году.
Предоставляемая настоящим законом правовая охрана распространяется на все виды программ для ЭВМ (в том числе на операционные системы и программные комплексы), которые могут быть выражены на любом языке и в любой форме, включая исходный текст на языке программирования и машинный код. Однако правовая охрана не распространяется на идеи и принципы, лежащие в основе программы для ЭВМ. В том числе на идеи и принципы организации интерфейса и алгоритма.
Для признания и осуществления авторского права на программы для ЭВМ не требуется её регистрация в какой-либо организации. Авторское право на программы для ЭВМ возникает автоматически при их создании.
Для оповещения с своих правах разработчик программы может. Начиная с первого выпуска в свет программы, использовать знак охраны авторского права, состоящий из трёх элементов:
буквы С в окружности или круглых скобках ©;
наименования (имени) правообладателя;
года первого выпуска программы в свет.
Например, знак охраны авторских прав на текстовый редактор Word выглядит следующим образом:
© Корпорация Microsoft, 1993-1997.
Автору программы принадлежит исключительное право осуществлять воспроизведение и распространение программы любыми способами, а также модификацию программы.
Организация или пользователь, правомерно владеющий экземпляром программы (купивший лицензию на её использование), вправе без получения дополнительного разрешения разработчика осуществлять любые действия, связанные с функционированием программы, в том числе её запись и хранение в памяти ЭВМ. Запись и хранение в памяти ЭВМ допускаются в отношении одной ЭВМ или одного пользователя в сети, если другое не предусмотрено договором с разработчиком.
Необходимо знать и выполнять существующие законы, запрещающие нелегальное копирование и использование лицензионного программного обеспечения. В отношении организаций или пользователей, которые нарушают авторские права, разработчик может потребовать возмещение причиненных убытков и выплаты нарушителем компенсации в определяемой по усмотрению суда сумме от 5000-кратного до 50000-кратного размера минимальной месячной оплаты труда.

Электронная подпись.
В 2002 году был принят Закон РФ «Об электронно-цифровой подписи», который стал законодательной основой электронного документооборота в России. По этому закону электронная цифровая подпись в электронном документе признаётся юридически равнозначной подписи в документе на бумажном носителе.
При регистрации электронно-цифровой подписи в специализированных центрах корреспондент получает два ключа: секретный и открытый. Секретный ключ хранится на дискете или смарт-карте и должен быть у всех потенциальных получателей документов и обычно рассылается по электронной почте.
Процесс электронного подписания документа состоит в обработке с помощью секретного ключа текста сообщения. Далее зашифрованное сообщение посылается по электронной почте абоненту. Для проверки подлинности сообщения и электронной подписи абонент использует открытый ключ.
С помощью блока специальных законов регулируется информационная безопасность государства, общества и личности. Среди этих законов:
Закон «О средствах массовой информации» от 27.12.91 г. N 2124-I;
Закон «О Федеральных органах правительственной связи и информации» от 19.02.92 N 4524-1;
Закон «О правовой охране программ для электронных вычислительных машин и баз данных» от 23.09.92 года №3523-1;
Закон «О правовой охране топологий интегральных микросхем» от 23.09.92 г. N 3526-I;
Закон «О государственной тайне» от 21 июля 1993 г. N 5485-1;
Закон «Об обязательном экземпляре документов» от 29.12.94 г. N 77-ФЗ;
Закон «Об информации, информатизации и защите информации» от 20.02.95 года N 24-ФЗ;
Закон «О внешней разведке» от 10.01.96 г. N 5-ФЗ;
Закон «Об участии в международном информационном обмене» от 5.06.1996 г. N 85-ФЗ;
Закон «О Государственной автоматизированной системе Российской Федерации «Выборы» N 20-ФЗ от 10 января 2003 г.
Заключение
Подводя итоги, следует упомянуть о том, что известно множество случаев, когда фирмы (не только зарубежные) ведут между собой настоящие «шпионские войны», вербуя сотрудников конкурента с целью получения через них доступа к информации, составляющую коммерческую тайну. Регулирование вопросов, связанных с коммерческой тайной, еще не получило в России достаточного развития. Имеющееся законодательство все же не обеспечивает соответствующего современным реалиям регулирования отдельных вопросов, в том числе и о коммерческой тайне. В то же время надо отдавать себе отчет, что ущерб, причиненный разглашением коммерческой тайны, зачастую имеет весьма значительные размеры (если их вообще можно оценить). Наличие норм об ответственности, в том числе уголовной, может послужить работникам предостережением от нарушений в данной области, поэтому целесообразно подробно проинформировать всех сотрудников о последствиях нарушений. Хотелось бы надеяться что создающаяся в стране система защиты информации и формирование комплекса мер по ее реализации не приведет к необратимым последствиям на пути зарождающегося в России информационно - интеллектуального объединения со всем миром.

Список литературы
1. Информатика: Учебник / под ред. Проф. Н.В. Макаровой. - М.: Базовый курс. Теория. 2004 г.
2. Безруков Н.Н. Компьютерные вирусы. - М.: Наука, 1991.
3. Мостовой Д.Ю. Современные технологии борьбы с вирусами // Мир ПК. - №8. - 1993.
4. Кент П. ПК и общество / Пер. c англ. В.Л. Григорьева. - М.: Компьютер, ЮНИТИ, 1996. - 267 c.
5. Левин В.К. Защита информации в информационно-вычислительных cистемах и сетях // Программирование. - 1994. - N5. - C. 5-16.
6. Об информации, информатизации и защите информации: Федеральный Закон // Российская газета. - 1995. - 22 февраля. - C. 4.

Введение. 3
1. Структура комплексной защиты информации. 4
1.1. Физическая защита. 5
1.2. Электромагнитная защита. 6
1.3. Криптографическая защита. 6
1.4. Человеческий фактор. 6
1.5. Активная защита. 7
1.6. Прочие меры.. 8
2. Содержание элемента программно-математической защиты информации. 9
2.1. Основные механизмы защиты компьютерных систем.. 9
2.2. Защита средствами операционной системы.. 10
2.3. Защита информации установкой пароля BIOS. 10
2.4. Блокировка загрузки операционной системы.. 11
2.5. Шифрование данных. 11
Заключение. 12
Список использованной литературы.. 13

Введение
Вступление человечества в 21 век знаменуется бурным развитием информационных технологий во всех сферах общественной жизни. Информация все в большей мере становится стратегическим ресурсом государства, производительной силой и дорогим товаром. Это не может не вызывать стремления государств, организаций и отдельных граждан получить преимущества за счет овладения информацией, недоступной оппонентам, а также за счет нанесения ущерба информационным ресурсам противника (конкурента) и защиты своих информационных ресурсов.
Противоборство государств в области информационных технологий (ИТ), стремление криминальных структур противоправно использовать информационные ресурсы, необходимость обеспечения прав граждан в информационный сфере, наличие множества случайных угроз вызывают острую необходимость обеспечения защиты информации в компьютерных системах (КС), являющихся материальной основой информатизации общества.
Проблема обеспечения информационной безопасности на всех уровнях может быть решена успешно только в том случае, если создана и функционирует комплексная система защиты информации (КСЗИ), охватывающая весь жизненный цикл компьютерных систем от разработки до утилизации и всю технологическую цепочку сбора, хранения, обработки и выдачи информации.
1. Структура комплексной защиты информации
Систематический подход к вопросам защиты информации требует, прежде всего, обозначить задачи. Чтобы это возможно было сделать, необходимо ответить на следующие вопросы:
u Что именно нужно защищать?
u От чего необходимо защищать систему?
u От кого требуется защищать систему?
Первый вопрос принадлежит к информационным процессам, нормальное течение которых специалисты и намереваются обеспечить.
Следующий из предложенных вопросов в той или иной мере задевает существующие отклонения по отношению к правильному протеканию процессов информационных взаимодействий.
Последний же вопрос имеет прямое отношение к тем объектам, над которыми производятся различные манипуляции с целью отклонения процесса от оптимума.
Ответ на первый из предложенных вопросов вопрос является лучшим макетом любого информационного процесса. Развернутый ответ на следующий вопрос в обязательном порядке должен содержать критерий "обычности" процесса, а также список возможных отклонений от нее, что в криптографии называются угрозами, - а именно ситуаций, которые можно было бы сделать абсолютно невозможными. Субъект, который препятствует нормальному протеканию процесса информационного взаимодействия, в криптографии называется "злоумышленником, налетчиком". Кстати, в качестве которого может выступать и законный участник информационного обмена, который желает добиться различных преимуществ для себя.
Что касается полного ответа на последний вопрос, то он является в криптографии так называемой моделью злоумышленника. Злоумышленником подразумевается отнюдь не конкретное лицо, а некая персонифицированная сумма желаемых целей и имеемых возможностей, для которых в полной мере справедлив принцип Паули, относящийся к физике элементарных частиц: оба субъекта, которые имеют одинаковые цели и возможности для их достижения, в криптографии же рассматриваются как одно и то же лицо, то есть злоумышленник.
Получив ответы на все перечисленные выше вопросы, получаем постановку задачи комплексной защиты информации и информационного процесса.
Различают несколько видов защиты информации. Чтобы выстроить правильную логику защиты, необходимо иметь четкое представление о каждом из них.
1.1. Физическая защита Физический доступ к определенному информационному носителю, обыкновенно, дает некую возможность получить краткий либо полный доступ и к самой информации. И препятствовать в данном случае сможет только криптография, хотя и не всегда. К примеру, если какой-либо злоумышленник все же получил некий физический доступ к компьютеру, в котором хранятся секретные данные в зашифрованном виде, теоретически и практически он в полной мере может считать свою задачу выполненной (в любом из существующих вариантов). Он устанавливает на этот компьютер специальную программу, задачи которой заключаются в перехвате информации в процессе ее зашифровки либо расшифровки.
Сначала следует проявить заботу о физической сохранности используемой компьютерной техники и соответствующих носителей. Все наиболее сложное заключается в осуществлении физической защиты линиями связи. Если используемые провода проходят за пределами охраняемого объекта, то передаваемые по ним данные должны с полной вероятностью считаться известными противнику.
1.2. Электромагнитная защита Известно, все электронные приборы излучают электромагнитные колебания и волны и воспринимают их извне. С помощью таких вот полей возможны и дистанционное изъятие информации с компьютеров, и необходимое действие на них. Электромагнитные колебания и волны могут быть защищены экраном из любого проводящего материала. Металлические корпуса, как и металлические сетки, вкупе с обёрткой из фольги являются хорошей защитой от воздействия электромагнитных волн.
Следует учитывать, что экранирование любого помещения процесс довольно дорогостоящий. Во время решения такого вопроса главным становится фактор экономической разумности защиты, о чем велась речь выше.
1.3. Криптографическая защита Целью криптографической системы считается зашифровка осмысленного исходного текста (иными словами открытого текста), где в результате получается абсолютно бессмысленный на первый взгляд зашифрованный текст - криптограмма. Лицо-получатель, которому предназначается полученная криптограмма, должен быть в состоянии провести дешифровку этого шифртекста, восстановив, таким образом, прежний соответствующий ей исходный текст. Следует учесть, что при этом противник (именуемый также как криптоаналитик) должен быть неспособен раскрыть открытый текст.
1.4. Человеческий фактор Известно, что человек является в наименьшей степени надёжным звеном в цепи защиты информации. Из всех удачных, будучи на слуху, попыток совершения преступлений в сфере компьютерной информации большинство было произведено с помощью подельников-сообщников из самого учреждения, которое и подверглось атаке.
Возникает вопрос: как же тогда можно защититься от угроз со стороны сотрудников прицельного учреждения? Ответ на него, если возможен, лежит в совершенно другой области. Одно, что можно точно прокомментировать – так это попытаться свести к минимуму данный фактор в системах защиты информации.
1.5. Активная защита Данный вид защиты – есть самый эффективный тогда, когда наиболее точно ясен источник угрозы информации. Если оно так, то проводятся активные мероприятия в сторону против попыток получения доступа к хранимой информации. Они могут быть следующими:
u обнаружение и выведение из работы устройств по причине скрытого изъятия используемой информации;
u поиск, а также задержание лиц, фиксирующих подобные устройства или выполняющих другие нелегальные манипуляции с целью доступа к информации;
u поиск вероятностных каналов утечки или незаконного доступа к информации и отправление по соответствующим каналам ложной информации;
u монтирование обманных потоков информации с целью маскирования настоящих потоков, а также рассеяния сил злоумышленника для их расшифровки;
u показы противнику возможных способов имеющейся защиты (не исключается и ложных) с целью возникновения у последнего мнения невозможности с преодолением защиты;
u скрытые разведывательные акты для получения сведений о том, какими способами злоумышленник имеет доступ к защищаемой информации, а также соответствующего противодействия.
1.6. Прочие меры Само собой разумеется, что в комплексе мер по защите различной информации учитывается также и применение необходимого соответствующего оборудования, размещаемого по обыкновению в специально отведенных (как правило - специально выстроенных) для этого помещениях.
2. Содержание элемента программно-математической защиты информации 2.1. Основные механизмы защиты компьютерных систем Для защиты компьютерных систем от неправомерного вмешательства в процессе их функционирования и несанкционированного доступа (НСД) к информации используются следующие основные методы зашиты (защитные механизмы):
u идентификация (именование и опознавание), аутентификация (подтверждение подлинности) пользователей системы;
u разграничение доступа пользователей к ресурсам системы и авторизация (присвоение полномочий) пользователям;
u регистрация и оперативное оповещение о событиях, происходящих в системе (аудит);
u криптографическое закрытие хранимых и передаваемых по каналамсвязи данных;
u контроль целостности и аутентичности (подлинности и авторства)данных;
u выявление и нейтрализация действий компьютерных вирусов;
u затирание остаточной информации на носителях;
u выявление уязвимостей (слабых мест) системы;
u изоляция (защита периметра) компьютерных сетей (фильтрация трафика, скрытие внутренней структуры и адресации, противодействие атакам на внутренние ресурсы и т.д.);
u обнаружение атак и оперативное реагирование;
u резервное копирование;
u маскировка.
Перечисленные механизмы защиты могут применяться в конкретных технических средствах и системах защиты в различных комбинациях и вариациях. Наибольший эффект достигается при их системном использовании в комплексе с другими видами мер защиты.
2.2. Защита средствами операционной системы MS-DOS, как наиболее распространенная операционная система, не представляет каких-либо методов защиты. Это наиболее открытая операционная система, и на ее базе разработано много различных аппаратных и программных средств, в частности - виртуальные кодируемые или шифруемые диски, блокираторы загрузки и т. д. Однако имеющиеся средства дисассемблирования, отладчики, а также большое количество квалифицированных программистов сводят на нет все программные методы.
DR-DOS, как одна из разновидностей MS-DOS, хоть и поддерживает блокировку файлов, но загрузка с дискеты или с другого накопителя делает бесполезной использование встроенных систем защиты.
Windows 95/98 основаны на базе MS-DOS, и им присущи все ее недостатки. Парольная система Windows 95/98 не выдерживает никакой критики, и даже установка дополнительных модулей системной политики не решает данную задачу.
Windows NT и Novell, хотя и решают задачу защиты, но... вот простейший пример - похитили, или изъяли в установленном порядке, компьютер. Диск установили вторым - и все ваше администрирование, на которое потрачены тысячи (если не миллионы) человеко-часов, - уже никому не помеха.
2.3. Защита информации установкой пароля BIOS Максимум что надо для блокировки, это - открыть компьютер, установить перемычку и снять ее (самое большее - две минуты). Есть два (известных мне) исключения - системы с часами на базе микросхем DALLAS и переносные компьютеры.
Здесь имеющаяся задача отнюдь не так просто решается, как кажется на первый взгляд. В данном случае помогает снятие накопителя и установка его в другой компьютер (опять же две минуты).
2.4. Блокировка загрузки операционной системы По этому пути идут многие фирмы. У данного метода опять-таки недостатки всплывают, если к компьютеру или накопителю можно получить доступ. Известные платы перехватывают прерывание по загрузке, однако настройщик современных компьютеров позволяет блокировать эту возможность, изъятие этой платы или накопителя сводит на нет кажущуюся мощь данного средства.
2.5. Шифрование данных Это одно из мощнейших методов. Начну его рассмотрение с определения по ГОСТ-19781: Шифрование - это процесс преобразования открытых данных в зашифрованные при помощи шифра или зашифрованных данных в открытые при помощи шифра - совокупность обратимых преобразований множества возможных открытых данных на множество возможных зашифрованных данных, осуществляемых по определенным правилам с применением ключей (конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор одного преобразования).
Стойкость современных шифровальных систем достаточно высока, и будем считать ее достаточной. Однако разработчик, продавец и установщик должны иметь лицензию. Но и этого мало! ДАЖЕ ПОЛЬЗОВАТЕЛЬ обязан иметь лицензию. В России разрешено использование только одного алгоритма и принципиально невозможно получить, а, значит, и использовать, импортные разработки!

Заключение
Теперь настало время подведения итогов.
Известно множество случаев, когда фирмы (не только зарубежные!!!) ведут между собой настоящие "шпионские войны", вербуя сотрудников конкурента с целью получения через них доступа к информации, которая составляет, ни много ни мало, а целую коммерческую тайну.
Регулирование вопросов, связанных с коммерческой тайной, еще не получило в России достаточного развития. Принятый еще в 1971 году КЗоТ, несмотря на многочисленные изменения, безнадежно устарел и не обеспечивает соответствующего современным реалиям регулирования многих вопросов, в том числе и о коммерческой тайне. Наличие норм об ответственности, в том числе уголовной, может послужить работникам предостережением от нарушений в данной области, поэтому, я считаю, что было бы целесообразным подробно проинформировать всех сотрудников о последствиях нарушений. В то же время надо отдавать себе отчет, что ущерб, будучи причиненный разглашением коммерческой тайны, зачастую имеет весьма значительные размеры (если их вообще можно оценить). Компенсировать убытки, потребовав их возмещения с виновного работника, скорее всего не удастся, отчасти из-за несовершенного порядка обращения имущественных взысканий на физических лиц, отчасти - просто из-за отсутствия у физического лица соответствующих средств. Хотелось бы надеяться, что создающиеся в стране система защиты информации и формирование комплекса мер по ее реализации не приведет к необратимым последствиям на пути зарождающегося в России информационно-интеллектуального объединения со всем миром.
Список использованной литературы:
1. Завгородний В.И. Комплексная защита информации в компьютерных системах: уч. пособие. – М.: Логос; ПБОЮЛ Н.А. Егоров, 2007. – 488 с.
2. Халяпин Д.Б. Защита информации. – Баярд М, 2004.- 431 с: ил.
3. Берник В., Матвеев С., Харин Ю. Математические и компьютерные основы криптологии. – М.: Логос; ПБОЮЛ Н.А. Егоров, 2007. – 315 с.
4. Источник сети Internet: www.college.ru

Защита от несанкционированного доступа к информации. Для

защиты от несанкционированного доступа к данным, хранящимся на компьютере, используются пароли. Компьютер разрешает доступ к своим ресурсам только тем пользователям, которые зарегистрированы и ввели правильный пароль. Каждому конкретному пользователю может быть разрешен доступ только к определенным информационным ресурсам. При этом может производиться регистрация всех попыток несанкционированного доступа.

Защита с использованием пароля используется при загрузке операционной системы (при загрузке системы пользователь должен ввести свой пароль). Вход по паролю может быть установлен в программе BIOS Setup, компьютер не начнет загрузку операционной системы, если не введен правильный пароль. Преодолеть такую защиту нелегко, более того, возникнут серьезные проблемы доступа к данным, если пользователь забудет этот пароль.

От несанкционированного доступа может быть защищен каждый диск, папка и файл локального компьютера. Для них могут быть установлены определенные права доступа (полный, только чтение, по паролю), причем права могут быть различными для различных пользователей.

В настоящее время для защиты от несанкционированного доступа к информации все более часто используются биометрические системы идентификации. Используемые в этих системах характеристики являются неотъемлемыми качествами личности человека и поэтому не могут быть утерянными и подделанными. К биометрическим системам защиты информации относятся системы идентификации по отпечаткам пальцев, системы распознавания речи, а также системы идентификации по радужной оболочке глаза.

Идентификация по отпечаткам пальцев. Оптические сканеры считывания отпечатков пальцев устанавливаются на ноутбуки, мыши, клавиатуры, flash-диски, а также применяются в виде отдельных внешних устройств и терминалов (например, в аэропортах и банках).

Если узор отпечатка пальца не совпадает с узором допущенного к информации пользователя, то доступ к информации невозможен.

Идентификация по характеристикам речи. Идентификация человека по голосу - один из традиционных способов распознавания, интерес к этому методу связан и с прогнозами внедрения голосовых интерфейсов в операционные системы. Можно легко узнать собеседника по телефону, не видя его. Также можно определить психологическое состояние по эмоциональной окраске голоса. Голосовая идентификация бесконтактна и существуют системы ограничения доступа к информации на основании частотного анализа речи.

Рис. 6.49.

Каждому человеку присуща индивидуальная частотная характеристика каждого звука (фонемы).

В романе А.И. Солженицина «В круге первом» описана голосовая идентификация человека еще в 40-е гг. прошлого века.

Рис. 6.50.

Идентификация по изображению лица. Для идентификации личности часто используется технологии распознавания по лицу. Они ненавязчивы, так как распознавание человека происходит на расстоянии, без задержек и отвлечения внимания и не ограничивают пользователя в свободе. По лицу человека можно узнать его историю, симпатии и антипатии, болезни, эмоциональное состояние, чувства и намерения по отношению к окружающим. Все это представляет особый интерес для автоматического распознавания лиц (например, для выявления потенциальных преступников).

Идентификационные признаки учитывают форму лица, его цвет, а также цвет волос. К важным признакам можно отнести также координаты точек лица в местах, соответствующих смене контраста (брови, глаза, нос, уши, рот и овал).

В настоящее время начинается выдача новых загранпаспортов, в микросхеме которых хранится цифровая фотография владельца паспорта.

Идентификация по радужной оболочке глаза. Радужная оболочка глаза является уникальной для каждого человека биометрической характеристикой. Она формируется в первые полтора года жизни и остается практически без изменений в течение всей жизни.

Рис. 6.51.

Идентификация по ладони руки. Практически все о конкретном человеке можно прочитать по ладони его руки. В биометрике в целях идентификации используется простая геометрия руки - размеры и форма, а также некоторые информационные знаки на тыльной стороне руки (образы на сгибах между фалангами пальцев, узоры расположения кровеносных сосудов).

Сканеры идентификации по ладони руки установлены в некоторых аэропортах, банках и на атомных электростанциях.

Рис. 6.52.

Физическая защита данных на дисках. Для обеспечения большей скорости чтения (записи) и надежности хранения данных на жестких дисках используются RAID-массивы (Redundant Arrays of Independent Disks - избыточный массив независимых дисков). Несколько жестких дисков подключаются к RAID-контроллеру, который рассматривает их как единый логический носитель информации.

Существует два способа реализации RAID-массива: аппаратный и программный. Аппаратный дисковый массив состоит из нескольких жестких дисков, управляемых при помощи специальной платы контроллера RAID-массива. Программный RAID-массив реализуется при помощи специального драйвера. В программный массив организуются дисковые разделы, которые могут занимать как весь диск, так и его часть. Программные RAID-массивы, как правило, менее надежны, чем аппаратные, но обеспечивают более высокую скорость работы с данными.

Существует несколько разновидностей RAID-массивов, так называемых уровней. Операционные системы поддерживаются несколько уровней RAID-массивов.

RAID 0. Для создания массива этого уровня понадобится как минимум два диска одинакового размера. Запись осуществляется по принципу чередования: данные делятся на порции одинакового размера (А1, А2, АЗ и т.д.) и поочередно распределяются по всем дискам, входящим в массив (рис. 6.53). Поскольку запись ведется на все диски, при отказе одного из них будут утрачены все хранившиеся на массиве данные, однако запись и чтение на разных дисках происходит параллельно и соответственно быстрее.

Рис. 6.53.

RAID 1. Массивы этого уровня построены по принципу зеркалирования, при котором все порции данных (Al, А2, АЗ и т.д.), записанные на одном диске, дублируются на другом (рис. 6.54). Для создания такого массива потребуются два или более дисков одинакового размера. Избыточность обеспечивает отказоустойчивость массива: в случае выхода из строя одного из дисков, данные на другом остаются неповрежденными. Расплата за надежность - фактическое сокращение дискового пространства вдвое. Скорость чтения и записи остается на уровне обычного жесткого диска.

Защита информации - это применение различных средств и методов, использование мер и осуществление мероприятий для того, чтобы обеспечить систему надежности передаваемой, хранимой и обрабатываемой информации.

Проблема защиты информации в системах электронной обработки данных возникла практически одновременно с их созданием. Ее вызвали конкретные факты злоумышленных действий над информацией.

Если в первые десятилетия активного использования ПК основную опасность представляли хакеры, подключившиеся к компьютерам в основном через телефонную сеть, то в последнее десятилетие нарушение надежности информации прогрессирует через программы, компьютерные вирусы, глобальную сеть Интернет.

Имеется достаточно много способов несанкционированного доступа к информации, в том числе: просмотр; копирование и подмена данных; ввод ложных программ и сообщений в результате подключения к каналам связи; чтение остатков информации на ее носителях; прием сигналов электромагнитного излучения и волнового характера; использование специальных программ.

1. Средства опознания и разграничения доступа к информации

Одним из наиболее интенсивно разрабатываемых направлений по обеспечению безопасности информации является идентификация и определение подлинности документов на основе электронной цифровой подписи.

2. Криптографический метод защиты информации

Наиболее эффективным средством повышения безопасности является криптографическое преобразование.

3. Компьютерные вирусы

Разрушение файловой структуры;

Загорание сигнальной лампочки дисковода, когда к нему нет обращения.

Основными путями заражения компьютеров вирусами обычно служат съемные диски (дискеты и CD-ROM) и компьютерные сети. Заражение жесткого диска компьютера может произойти в случае загрузки компьютера с дискеты, содержащей вирус.

По тому, какой вид среды обитания имеют вирусы, их классифицируют на загрузочные, файловые, системные, сетевые и файлово - загрузочные (многофункциональные).


Загрузочные вирусы внедряются в загрузочный сектор диска или в сектор, который содержит программу загрузки системного диска.

Файловые вирусы помещаются в основном в исполняемых файлах с расширением.СОМ и.ЕХЕ.

Системные вирусы внедряются в системные модули и драйверы периферийных устройств, таблицы размещения файлов и таблицы разделов.

Сетевые вирусы находятся в компьютерных сетях, а файлово-загрузочные - заражают загрузочные секторы дисков и файлы прикладных программ.

По пути заражения среды обитания вирусы разделяются на резидентные и нерезидентные.

Резидентные вирусы при заражении компьютера оставляют в ОП свою резидентную часть, которая после заражения перехватывает обращение ОС к другим объектам заражения, внедряется в них и выполняет свои разрушительные действия, которые могут привести к выключению или перезагрузке компьютера. Нерезидентные вирусы не заражают ОП компьютера и проявляют активность ограниченное время.

Особенность построения вирусов влияет на их проявление и функционирование.

Логическая бомба является программой, которая встраивается в большой программный комплекс. Она безвредна до наступления определенного события, после которого реализуется ее логический механизм.

Программы-мутанты, самовоспроизводясь, создают копии, явно отличающиеся от оригинала.

Вирусы-невидимки, или стелс-вирусы, перехватывают обращения ОС к пораженным файлам и секторам дисков и подставляют вместо себя незараженные объекты. Эти вирусы при обращении к файлам применяют достаточно оригинальные алгоритмы, позволяющие «обманывать» резидентные антивирусные мониторы.

Макровирусы используют возможности макроязыков, которые встроены в офисные программы обработки данных (текстовые редакторы, электронные таблицы).

По степени воздействия на ресурсы компьютерных систем и сетей, или по деструктивным возможностям, выделяют безвредные, неопасные, опасные и разрушительные вирусы.

Безвредные вирусы не оказывают патологического влияния на работу компьютера. Неопасные вирусы не разрушают файлы, однако уменьшают свободную дисковую память, выводят на экран графические эффекты. Опасные вирусы часто вызывают значительные нарушения в работе компьютера. Разрушительные вирусы могут привести к стиранию информации, полному или частичному нарушению работы прикладных программ. Важно иметь в виду, что любой файл, способный к загрузке и выполнению кода программы, является потенциальным местом, где может помещаться вирус.

4. Антивирусные программы

Широкое распространение компьютерных вирусов привело к разработке антивирусных программ, которые позволяют обнаруживать и уничтожать вирусы, «лечить» пораженные ресурсы.

Основой работы большинства антивирусных программ является принцип поиска сигнатуры вирусов. Вирусной сигнатурой называют некоторую уникальную характеристику вирусной программы, выдающую присутствие вируса в компьютерной системе.

По способу работы антивирусные программы можно разделить на фильтры, ревизоры, доктора, детекторы, вакцины и др.

Программы-фильтры - это «сторожа», которые постоянно находятся в ОП. Они являются резидентными и перехватывают все запросы к ОС на выполнение подозрительных действий, т. е. операций, которые используют вирусы для своего размножения и порчи информационных и программных ресурсов в компьютере, в том числе для переформатирования жесткого диска. Среди них можно выделить попытки изменения атрибутов файлов, коррекции исполняемых СОМ- или ЕХЕ-файлов, записи в загрузочные секторы диска.

Постоянное нахождение программ-«сторожей» в ОП существенно уменьшает ее объем, что является основным недостатком этих программ. К тому же программы-фильтры не способны «лечить» файлы или диски. Эту функцию выполняют другие антивирусные программы, например AVP, Norton Antivirus for Windows, Thunder Byte Professional, McAfee Virus Scan.

Программы-ревизоры являются надежным средством защиты от вирусов. Они запоминают исходное состояние программ, каталогов и системных областей диска при условии, что компьютер еще не был заражен вирусом. Впоследствии программа периодически сравнивает текущее состояние с исходным. При обнаружении несоответствий (по длине файла, дате модификации, коду циклического контроля файла) сообщение об этом появляется на экране компьютера. Среди программ-ревизоров можно выделить программу Adinf и дополнение к ней в виде Adinf cure Module.

Программа-доктор способна не только обнаруживать, но и «лечить» зараженные программы или диски. При этом она уничтожает зараженные программы тела вируса. Программы данного типа можно разделить на фаги и полифаги. Фаги - это программы, с помощью которых отыскиваются вирусы определенного вида. Полифаги предназначены для обнаружения и уничтожения большого числа разнообразных вирусов. В нашей стране наиболее часто используются такие полифаги, как MS Antivirus, Aidstest, Doctor Web. Они непрерывно обновляются для борьбы с появляющимися новыми вирусами.

Программы-детекторы способны обнаруживать файлы, зараженные одним или несколькими известными разработчикам программ вирусами.

Программы-вакцины, или иммунизаторы, относятся к классу резидентных программ. Они модифицируют программы и диски так, что это не отражается на их работе. Однако вирус, от которого производится вакцинация, считает их уже зараженными и не внедряется в них. В настоящий момент разработано множество антивирусных программ, получивших широкое признание и постоянно пополняющихся новыми средствами для борьбы с вирусами.

5. Безопасность данных в интерактивной среде

Интерактивные среды уязвимы с позиций безопасности данных. Примером интерактивных сред является любая из систем с коммуникационными возможностями, например электронная почта, компьютерные сети, Интернет.

С целью защиты информации от хулиганствующих элементов, неквалифицированных пользователей и преступников в системе Интернет применяется система полномочий, или управление доступом.

Задание: конспект, ответить на вопросы уч.Цв., стр.176, вопр. 3, 4 и 5.

Написание доклада представляет собой самостоятельный научный труд студента, который предполагает его последующую защиту. Чтобы хорошо выступить перед аудиторией, необходимо, во-первых, хорошо разбираться в теме, изучить несколько источников литературы, иметь представление о том, какое мнение на этот счет имеют ученые, и иметь свою точку зрения.


Обычно, защита доклада происходит в форме дискуссии. Сначала преподаватель или научный руководитель объявляет студента и тему его работы, затем начинается выступление, которое содержит результаты исследования с приведением рекомендаций и в конце происходит ответ выступающего на интересующие вопросы аудитории.

Хороший доклад, при наличии прекрасного содержания, должен быть грамотно представлен. Необходимо заинтересовать аудиторию своим выступлением. Чтобы доклад воспринимался положительно, необходимо:

  1. Наладить контакт со слушателем. Это очень важный этап, поэтому к нему нужно относится очень внимательно. Среди аудитории следует выбрать человека, которому будет осуществляться выступление. По сути, можно периодически переключать взгляд на нескольких членов комиссии, но тогда можно отвлекаться и потерять нить рассуждений.
  2. Найти индивидуальный подход в произношении речи. Во-первых, важно, чтобы информация было слышно всем, как находящимся на передних рядах, так и тем, кто оказался в конце аудитории. Речь должна звучать просто и ясно, доступно для каждого участника.
  3. Постараться избавиться от стеснительности и скованности, чтобы выступление шло плавно. Безусловно, побороть страх очень сложно, но для себя необходимо уяснить, что ничего страшного не произойдет, скорее, наоборот, много людей смогут прослушать интересную работу, оценить сложность проведенного исследования и, возможно, заинтересоваться данной темой и продолжить самостоятельный анализ. Поэтому при выступлении следует рассчитывать на интерес слушателей, а для этого не нужно думать, будто доклад читается на страшном суде и один неверный шаг может привести к краху.
  4. Разнообразить выступление. Не стоит говорить свою речь монотонно, это может отвлечь внимание комиссии на посторонние дела. Громкая, четкая речь, с различной окраской тембра будет уместной.
  5. Общаться со слушателями во время своей речи. Можно разнообразить выступление выражениями, типа: «на ваш вопрос я могу ответить четко», «Вы спросите, к каким последствиям это приведет».

Если обычный доклад читается в свободной форме, то выступление на конференции требует совершенно другого подхода. Здесь уже необходимо доказывать свою точку зрения или оспаривать чужое мнение. Поэтому шутки в выступлении точно не уместны. На выступление отводится около десяти минут и за это время необходимо успеть изложить результаты своей работы.

Обычно для выступления доклад разделяется на три части. В первой содержится краткое содержание введения, то есть указывается актуальность темы работы, методы исследования. Однако, здесь также важно привлечь внимание слушателей с самого начала. Вторая часть интересна научными исследованиями выступающего, его личный вклад. Можно использовать при выступлении графики, чертежи, таблицы, любой наглядный материал. Третья часть демонстрирует полученные результаты и возможные рекомендации.

После выступления также необходимо ответить на вопросы аудитории.