Протокол ip сети используется на каком уровне. Что такое протокол TCP-IP

Протокол ip сети используется на каком уровне. Что такое протокол TCP-IP
Протокол ip сети используется на каком уровне. Что такое протокол TCP-IP

Доброго времени суток, дорогие читатели.
По многочисленным просьбам сегодня я публикую для Вас статью, которая познакомит Вас с основами основ терминов компьютерной сети, а именно:

  • Сетевые протоколы - что это за страшные названия и с чем их едят
  • UDP, TCP, ICMP , - что, зачем и в чем разница
  • IP -адрес, - у всех есть, но не все знают нафига эта штука:-)
  • Маска адреса (подсеть)
  • Шлюз (gateway)
  • Несколько слов о таблицах маршрутизации
  • Порты, - что это на самом деле
  • MAC -адрес

Примерно так.

Статья, думаю, будет полезна всем от мала до велика, ибо содержит не столько набор странных непонятных действий или слов, сколько блок доступным языком изложенной информации, которая, как минимум, даст Вам понимание как вообще это всё работает и зачем это нужно. Поехали.

Сетевые протоколы TCP/IP, NWLink IPX/SPX, NetBEUI

Давайте начнем с того, что вообще такое сетевой протокол и с чем его едят.
Сетевой протокол - это набор программно реализованных правил общения между компьютерами. Этакий язык, на котором компьютеры разговаривают друг с другом и передают информацию. Ранее компьютеры были, так сказать, многоязычны и в старых версиях Windows использовался целый набор протоколов, - TCP/IP, NWLink IPX/SPX, NetBEUI . Ныне же пришли к общей договоренности, и стандартом стало использование исключительно протокола TCP/IP , а посему речь далее пойдет именно о нем.

Когда говорят о TCP/IP , то обычно подразумевают под этим именем множество различных.. правил или, скажем, стандартов, которые прописаны с использованием (или под использование) этого протокола. Так, например, есть правила, по которым осуществляется обмен сообщениями между почтовыми серверами и есть правила, по которым конечный пользователь получает в свой ящик письма. Имеются правила для проведения видео-конференций и правила для организации "телефонных" переговоров по Интернету. Фактически, это даже не то чтобы правила.. Скорее этакая грамматика, что ли. Ну знаете, в английском одна структура построения диалогов, в французском другая.. Вот и в TCP/IP нечто подобное, т.е. некая связка различных грамматических правил представляет собой как раз цельный протокол TCP/IP или, точнее говоря, стек протоколов TCP/IP .

Сетевые протоколы UDP, TCP, ICMP

В рамках протокола TCP/IP для передачи данных используются протоколы - TCP и UDP . Многие наверняка слышали, что есть порты как TCP , так и UDP , но не все знают в чем разница и что это вообще. И так..

Передача данных по протоколу TCP (Transmission Control Protocol - Протокол Управления Передачей) предусматривает наличие подтверждений получения информации. "-Ну, мол, - получил? -Получил!" Если же передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение, а UDP (User Datagram Protocol - Протокол Пользовательских Датаграмм) - нет. UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы или IP-телефония (яркий представитель которой, - Skype)). То есть разница заключается в наличии подтверждения приема. Казалось бы "Всего то!", но на практике это играет важную роль.

Есть еще так же протокол ICMP (Internet Control Message Protocol - межсетевой протокол управляющих сообщений), который используется для передачи данных о параметрах сети. Он включает в себя служебные типы пакетов, таки как ping, distination unreachable, TTL и пр.

Что такое IP-адрес

У всех он есть, но не все имеют представление что за адрес такой и почему вообще без него нельзя. Рассказываю.

IP -адрес - 32 -х битное число, используемое для идентификации компьютера в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например, 192.168.101.36

IP- адреса уникальны, - это значит, что каждый компьютер имеет свое собственное сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP -адреса распределяются централизованно, интернет-провайдеры делают заявки в национальные центры в соответствии со своими потребностями. Полученные провайдерами диапазоны адресов распределяются дальше между клиентами. Клиенты, в свою очередь, сами могут выступать в роли провайдера и распределять полученные IP -адреса между субклиентами и т.д. При таком способе распределения IP -адресов компьютерная система точно знает "расположение" компьютера, имеющего уникальный IP -адрес; - ей достаточно переслать данные в сеть "владельца", а провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит информацию следующему владельцу поддиапазона IP -адресов, пока данные не поступят на компьютер назначения.

Для построения же локальных сетей выделены спец.диапазоны адресов. Это адреса 10.x.x.x , 192.168.x.x , 10.x.x.x , c 172.16.x.x по 172.31.x.x , 169.254.x.x , где под x - имеется ввиду любое число это от 0 до 254 . Пакеты, передаваемые с указанных адресов, не маршрутизируется, иными словами, попросту не пересылаются через Интернет, а поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Т.е., в компании ООО "Рога и копыта " и ООО "Вася и компания " могут находится два компьютера с адресами 192.168.0.244 , но не могут, скажем, с адресами 85.144.213.122 , полученными от провайдера интернета, т.к. в интернете не может быть два одинаковых IP -адреса. Для пересылки информации с таких компьютеров в Интернет и обратно используются спец.программы и устройства, которые заменяют локальные адреса реальными при работе с интернетом. Иными словами, данные в Сеть пересылаются с реального IP -адреса, а не с локального. Этот процесс происходит не заметно для пользователя и называется трансляцией адресов. Хочется так же упомянуть, что в рамках одной сети, скажем, компании, ООО "Рога и копыта ", не может быть два компьютера с одним локальным IP-адресом, т.е., в указанном выше примере имелось ввиду, что один компьютер с адресом 192.168.0.244 в одной компании, второй с таким же адресом - в другой. В одной же компании два компьютера с адресом 192.168.0.244 попросту не уживутся.

Вы наверняка слышали такие термины как внешний IP и внутренний IP , постоянный (статический IP) и переменный (динамический) IP . В двух словах о них:

  • внешний IP - это как раз тот самый IP , который выдает Вам провайдер, т.е. Ваш уникальный адрес в интернете, например, - 85.144.24.122
  • внутренний IP , - это локальный IP , т.е. Ваш IP в локальной сети, например, - 192.168.1.3
  • статический IP - это IP , который не меняется с каждым подключением, т.е. закреплен за Вами твердо и навсегда
  • динамический IP , - это плавающий IP -адрес, который меняется с каждым подключением

Тип Вашего IP (статический или динамический) зависит от настроек провайдера.

Что такое маска адреса (подсеть)

Понятие подсети введено, чтобы можно было выделить часть IP -адресов одной организации, часть другой и тд. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеры с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута для пересылки из одной сети в другую.

Маска - это параметр, который сообщает программному обеспечению о том, сколько компьютеров объединено в данную группу (подсеть). Маска адреса имеет такую же структуру как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255 . При этом, чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших компаний маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом. Так, например, сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.254 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127 . Думаю, смысл понятен. Как правило сети с небольшим возможным числом компьютеров используются провайдерами с целью экономии IP-адресов. Например, клиенту, может быть назначен адрес с маской 255.255.255.252 . Такая подсеть содержит в себе только два компьютера.

После того как компьютер получил IP-адрес и ему стало известно значение маски подсети, программа может начать работу в данной локальной подсети. Однако же, чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика как адрес шлюза (Gateway).

Что такое Шлюз (Gateway)

Шлюз - это устройство (компьютер или маршрутизатор), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.

Для работы только в локальной сети шлюз может не указываться.

Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза, - это адрес того устройства, которое имеет подключение к Интернету. При наличии нескольких маршрутов будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Что такое таблицы маршрутизации

И вот мы плавно добрались и до них. И так.. Что же за таблицы такие.

Организация или пользователь может иметь несколько точек подключения к Интернету (например, резервные каналы на случай, если у первого провайдера что-то выйдет из строя, а интернет таки очень нужен) или содержать в своей структуре несколько IP -сетей. В этом случае, чтобы система знала каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации. В таблицах маршрутизации для каждого шлюза указываются те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны, но с разной стоимостью передачи данных: например, информация, будет пересылаться по каналу, имеющему самую низкую стоимость, а в случае выхода его из строя по тем или иным причинам, автоматически будет использоваться следующее доступное наиболее дешевое соединение.

Что такое сетевые порты

При передаче данных кроме IP -адресов отправителя и получателя пакет информации содержит в себе номера портов. Пример: 192.168.1.1:80 , - в данном случае 80 - это номер порта. Порт - это некое число, которое используется при приеме и передаче данных для идентификации процесса (программы), который должен обработать данные. Так, если пакет послан на 80 -й порт, то это свидетельствует, что информация предназначена серверу HTTP .

Номера портов с 1 -го до 1023 -й закреплены за конкретными программами (так называемые well-known-порты). Порты с номерами 1024 -65 535 могут быть использованы в программах собственной разработки. При этом возможные конфликты должны решаться самими программами путем выбора свободного порта. Иными словами, порты будут распределяться динамически: возможно, что при следующем старте программа выберет иное значение порта, если, конечно, Вы вручную через настройки не задавали ей порт.

Что есть MAC-адрес

Дело в том, что пересылаемые пакеты в сети адресуются компьютерам не по их именам и не на IP -адрес. Пакет предназначается устройству с конкретным адресом, который и называется MAC -адресом.

MAC-адрес - это уникальный адрес сетевого устройства, который заложен в него изготовителем оборудования, т.е. это этакий проштампованный номер Вашей сетевой карты. Первая половина MAC -адрес представляет собой идентификатор изготовителя, вторая - уникальный номер данного устройства.

Как правило MAC -адрес бывает требуется для идентификации, скажем, у провайдера (если провайдер использует привязку по мак-адресу вместо логина-пароля) или при настройке маршрутизатора.

Где посмотреть все сетевые настройки

Чуть не забыл сказать пару слов о том где можно поглядеть и поменять всё это.

Протокол TCP/IP (Transmission Control Protocol/Internet Protocol ) представляет собой стек сетевых протоколов, повсеместно используемый для Интернета и других подобных сетей (например, данный протокол используется и в ЛВС). Название TCP/IP произошло от двух наиболее важных протоколов:

  • IP (интернет протокол) - отвечает за передачу пакета данных от узла к узлу. IP пересылает каждый пакет на основе четырехбайтного адреса назначения (IP-адрес).
  • TCP (протокол управления передачей) - отвечает за проверку корректной доставки данных от клиента к серверу. Данные могут быть потеряны в промежуточной сети. TCP добавлена возможность обнаружения ошибок или потерянных данных и, как следствие, возможность запросить повторную передачу, до тех пор, пока данные корректно и полностью не будут получены.

Основные характеристики TCP/IP:

  • Стандартизованные протоколы высокого уровня, используемые для хорошо известных пользовательских сервисов.
  • Используются открытые стандарты протоколов, что дает возможность разрабатывать и дорабатывать стандарты независимо от программного и аппаратного обеспечения;
  • Система уникальной адресации;
  • Независимость от используемого физического канала связи;

Принцип работы стека протоколов TCP/IP такой же как и в модели OSI, данные верхних уровней инкапсулируются в пакеты нижних уровней.

Если пакет продвигается по уровню сверху вниз - на каждом уровне добавляется к пакету служебная информация в виде заголовка и возможно трейлера (информации помещенной в конец сообщения). Этот процесс называется . Служебная информация предназначается для объекта того же уровня на удаленном компьютере. Ее формат и интерпретация определяются протоколами данного уровня.

Если пакет продвигается по уровню снизу вверх - он разделяется на заголовок и данные. Анализируется заголовок пакета, выделяется служебная информация и в соответствии с ней данные перенаправляются к одному из объектов вышестоящего уровня. Вышестоящий уровень, в свою очередь, анализирует эти данные и также их разделяет их на заголовок и данные, далее анализируется заголовок и выделяется служебная информация и данные для вышестоящего уровня. Процедура повторяется заново пока пользовательские данные, освобожденные от всей служебной информации, не дойдут до прикладного уровня.

Не исключено, что пакет так и не дойдет до прикладного уровня. В частности, если компьютер работает в роли промежуточной станции на пути между отправителем и получателем, тогда объект, на соответствующем уровне, при анализе служебной информации определит, что пакет на этом уровня адресован не ему, в следствии чего, объект проведет необходимые мероприятия для перенаправления пакета к пункту назначения или возврата отправителю с сообщением об ошибке. Но так или иначе не будет осуществлять продвижение данных на верхний уровень.

Пример инкапсуляции можно представить следующим образом:

Рассмотрим каждые функции уровней

Прикладной уровень

Приложения, работающие со стеком TCP/IP, могут также выполнять функции представительного уровня и частично сеансового уровня модели OSI.

Распространенными примерами приложений являются программы:

Для пересылки данных другому приложению, приложение обращается к тому или иному модулю транспортного модуля.

Транспортный уровень

Протоколы транспортного уровня обеспечивают прозрачную доставку данных меду двумя прикладными процессами. Процесс, получающий или отправляющий данные, с помощью транспортного уровня идентифицируется на этом уровне номером, который называется номером порта.

Таким образом, роль адреса отправителя и получателя на транспортном уровне выполняется номером порта. Анализируя заголовок своего пакета, полученного от межсетевого уровня, транспортный модуль определяет по номеру порта получателя по какому из прикладных процессов направленны данные и передает эти данные к соответствующему прикладному процессу.

Номер порта получателя и отправителя записывается в заголовок транспортным модулем отправляющим данные. Заголовок транспортного уровня содержит также и некоторую другую служебную информацию, и формат заголовка зависит от используемого транспортного протокола.

Средства транспортного уровня представляют собой функциональную надстройку над сетевым уровнем и решают две основных задачи:

  • обеспечение доставки данных между конкретными программами, функционирующими, в общем случае, на разных узлах сети;
  • обеспечение гарантированной доставки массивов данных произвольного размера.

В настоящее время в Интернет используются два транспортных протокола – UDP , обеспечивающий негарантированную доставку данных между программами, и TCP , обеспечивающий гарантированную доставку с установлением виртуального соединения.

Сетевой (межсетевой) уровень

Основным протоколом этого уровня является протокол IP, который доставляет блоки данных (дейтаграммы) от одного IP-адреса к другому. IP-адрес является уникальным 32-х битным идентификатором компьютера, точнее его сетевого интерфейса. Данные для дейтаграммы передаются IP модулю транспортным уровнем. IP модуль добавляет к этим данным заголовок, содержащий IP-адрес отправителя и получателя, и другую служебную информацию.

Таким образом, сформированная дейтаграмма передается на уровень доступа к среде передачи, для отправки по каналу передачи данных.

Не все компьютеры могут непосредственно связаться друг с другом, часто чтобы передать дейтаграмму по назначению требуется направить ее через один или несколько промежуточных компьютеров по тому или ному маршруту. Задача определения маршрута для каждой дейтаграммы решается протоколом IP.

Когда модуль IP получает дейтаграмму с нижнего уровня, он проверяет IP адрес назначения, если дейтаграмма адресована данному компьютеру, то данные из нее передаются на обработку модулю вышестоящего уровня, если же адрес назначения дейтаграммы чужой, то модуль IP может принять два решения:

  • Уничтожит дейтаграмму;
  • Отправить ее дальше к месту назначения, определив маршрут следования, так поступают промежуточные станции – маршрутизаторы .

Также может потребоваться на границе сетей, с различными характеристиками, разбить дейтаграмму на фрагменты, а потом собрать их в единое целое на компьютере получателя. Это также задача протокола IP.

Также протокол IP может отправлять сообщения – уведомления с помощью протокола ICMP , например, в случае уничтожения дейтаграммы. Более никаких средств контроля корректности данных, подтверждения или доставки, предварительного соединения в протоколе нет, эти задачи возложены на транспортный уровень.

Уровень доступа к среде

Функции этого уровня следующие:

  • Отображение IP-адресов в физические адреса сети. Эту функцию выполняет протокол ARP ;
  • Инкапсуляция IP-дейтаграмм в кадры для передачи по физическому каналу и извлечение дейтаграмм из кадров, при этом не требуется какого-либо контроля безошибочной передачи, поскольку в стеке TCP/IP такой контроль возложен на транспортный уровень или на само приложение. В заголовке кадров указывается точка доступа к сервису SAP, это поле содержащее код протокола;
  • Определение метода доступа к среде передачи, т.е. способа, с помощью которого компьютеры устанавливает свое право на передачу данных;
  • Определение представления данных в физической среде;
  • Пересылка и прием кадра.

Рассмотрим инкапсуляцию на примере перехвата пакета протокола HTTP с помощью сниффера wireshark, который работает на прикладном уровне протокола TCP/IP:


Помимо самого перехваченного протокола HTTP, на основании стека TCP/IP сниффер описывает каждый нижележащий уровень. HTTP инкапсулируется в TCP, протокол TCP в IPv4, IPv4 в Ethernet II.

Принципы работы интернет-протоколов TCP/IP по своей сути очень просты и сильно напоминают работу нашей советской почты.

Вспомните, как работает наша обычная почта. Сначала вы на листке пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Все, письмо дошло до получателя. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.

На конверте письма будет написано примерно следующее:

Адрес отправителя:
От кого: Иванов Иван Иванович
Откуда: Ивантеевка, ул. Большая, д. 8, кв. 25

Адрес получателя:
Кому: Петров Петр Петрович
Куда: Москва, Усачевский переулок, д. 105, кв. 110

Теперь мы готовы рассмотреть взаимодействие компьютеров и приложений в сети Интернет (да и в локальной сети тоже) . Обратите внимание, что аналогия с обычной почтой будет почти полной.

Каждый компьютер (он же: узел, хост ) в рамках сети Интернет тоже имеет уникальный адрес, который называется IP-адрес (Internet Protocol Address ), например: 195.34.32.116. IP адрес состоит из четырех десятичных чисел (от 0 до 255 ), разделенных точкой. Но знать только IP адрес компьютера еще недостаточно, т.к. в конечном счете обмениваются информацией не компьютеры сами по себе, а приложения, работающие на них. А на компьютере может одновременно работать сразу несколько приложений (например почтовый сервер, веб-сервер и пр. ). Для доставки обычного бумажного письма недостаточно знать только адрес дома - необходимо еще знать номер квартиры. Также и каждое программное приложение имеет подобный номер, именуемый номером порта. Большинство серверных приложений имеют стандартные номера, например: почтовый сервис привязан к порту с номером 25 (еще говорят: «слушает» порт, принимает на него сообщения), веб-сервис привязан к порту 80, FTP — к порту 21 и так далее.

Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом:

«адрес дома» = «IP компьютера»
«номер квартиры» = «номер порта»

В компьютерных сетях, работающих по протоколам TCP/IP, аналогом бумажного письма в конверте является пакет, который содержит собственно передаваемые данные и адресную информацию - адрес отправителя и адрес получателя, например:

Адрес отправителя (Source address): IP: 82.146.49.55 Port: 2049 Адрес получателя (Destination address): IP: 195.34.32.116 Port: 53 Данные пакета: ...

Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.

Обратите внимание, комбинация: «IP адрес и номер порта» — называется «сокет «.

В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.

Как правило взаимодействие осуществляется по схеме «клиент-сервер »: «клиент» запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер — 80-й порт и пр.

Большинство программ на домашнем компьютере являются клиентами — например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр.

Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.

Повторение — мать учения: IP - это адрес компьютера (узла, хоста) в сети, а порт - номер конкретного приложения, работающего на этом компьютере .

Однако человеку запоминать цифровые IP адреса трудно — куда удобнее работать с буквенными именами. Ведь намного легче запомнить слово, чем набор цифр. Так и сделано — любой цифровой IP адрес можно связать с буквенно-цифровым именем. В результате например вместо 23.45.67.89 можно использовать имя. А преобразованием доменного имени в цифровой IP адрес занимается сервис доменных имен - DNS (Domain Name System).

Рассмотрим подробнее, как это работает. Ваш провайдер явно (на бумажке, для ручной настройки соединения) или неявно (через автоматическую настройку соединения) предоставляет вам IP адрес сервера имен (DNS ). На компьютере с этим IP адресом работает приложение (сервер имен), которое знает все доменные имена в Интернете и соответствующие им цифровые IP адреса. DNS-сервер «слушает» 53-й порт, принимает на него запросы и выдает ответы, например:

Запрос от нашего компьютера: «Какой IP адрес соответствует имени www.site.com?»
Ответ сервера: «23.45.67.89.»

Теперь рассмотрим, что происходит, когда в своем браузере вы набираете доменное имя (URL) этого сайта (www.site.com) и, нажав, в ответ от веб-сервера получаете страницу этого сайта.

Например:

IP адрес нашего компьютера: 91.76.65.216
Браузер: Internet Explorer (IE),
DNS сервер (стрима): 195.34.32.116 (у вас может быть другой), Страница, которую мы хотим открыть: www.site.com.

Набираем в адресной строке браузера доменное имя www.ofnet.ru и жмем. Далее операционная система производит примерно следующие действия:

Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53. Как было рассмотренно выше, порт 53 соответствует DNS-серверу — приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени.

Диалог примерно следующий:

— Какой IP адрес соответствует имени www.site.com?
— 23.45.67.89.

Далее наш компьютер устанавливает соединение с портом 80 компьютера 82.146.49.55 и посылает запрос (пакет с запросом) на получение страницы www.ofnet.ru. 80-й порт соответствует веб-серверу. В адресной строке браузера 80-й порт как правило не пишется, т.к. используется по умолчанию, но его можно и явно указать после двоеточия — http://www.site.com:80.

Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML — языке разметки текста, который понимает браузер.

Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.

Зачем эти принципы надо понимать?

Например, вы заметили странное поведение своего компьютера — непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» — «Выполнить» — набираем cmd — «Ок»). В консоли набираем команду netstat -anи жмем. Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов. Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.

Также понимание принципов работы Интернета необходимо для правильной настройки (проще говоря брандмауэра:)). Эта программа (которая часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов — «своих» и «вражеских». Своих пропускать, чужих не пущать. Например, если ваш фаерволл сообщает вам, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?

Ну и самое главное - эти знания крайне полезны при общении с техподдержкой.

Напоследок приведу список портов , с которыми вам, вероятно, придется столкнуться:

135-139 - эти порты используются Windows для доступа к общим ресурсам компьютера - папкам, принтерам. Не открывайте эти порты наружу, т.е. в районную локальную сеть и Интернет. Их следует закрыть фаерволлом. Также если в локальной сети вы не видите ничего в сетевом окружении или вас не видят, то вероятно это связано с тем, что фаерволл заблокировал эти порты. Таким образом для локальной сети эти порты должны быть открыты, а для Интернета закрыты.

21 - порт FTP сервера.

25 - порт почтового SMTP сервера. Через него ваш почтовый клиент отправляет письма. IP адрес SMTP сервера и его порт (25-й) следует указать в настройках вашего почтового клиента.

110 - порт POP3 сервера. Через него ваш почтовый клиент забирает письма из вашего почтового ящика. IP адрес POP3 сервера и его порт (110-й) также следует указать в настройках вашего почтового клиента.

80 - порт WEB-сервера.

3128, 8080 - прокси-серверы (настраиваются в параметрах браузера).

Несколько специальных IP адресов:

127.0.0.1 - это localhost, адрес локальной системы, т.е. локальный адрес вашего компьютера.
0.0.0.0 — так обозначаются все IP-адреса.
192.168.xxx.xxx - адреса, которые можно произвольно использовать в локальных сетях, в глобальной сети Интернет они не используются. Они уникальны только в рамках локальной сети. Адреса из этого диапазона вы можете использовать по своему усмотрению, например, для построения домашней или офисной сети.
Что такое маска подсети и шлюз по умолчанию (роутер, маршрутизатор)?

(Эти параметры задаются в настройках сетевых подключений).

Все просто. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения - принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с советской почтой).

Напоследок рассмотрим что же означают непонятные термины:

TCP/IP - это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).

IP протокол - это протокол так называемого сетевого уровня. Задача этого уровня - доставка ip-пакетов от компьютера отправителя к компьютеру получателю. По-мимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту, т.е. приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно - это не его задача, это задача транспортного уровня.

TCP и UDP - это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.

TCP - это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).

UDP - это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет - неважно).

Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http, ftp и пр. Например HTTP и FTP - используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.
Как посмотреть текущие соединения?

Текущие соединения можно посмотреть с помощью команды

Netstat -an

(параметр n указывает выводить IP адреса вместо доменных имен).

Запускается эта команда следующим образом:

«Пуск» — «Выполнить» — набираем cmd — «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем. Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов.

Например получаем:

Активные подключения Имя Локальный адрес Внешний адрес Состояние TCP 0.0.0.0:135 0.0.0.0:0 LISTENING TCP 91.76.65.216:139 0.0.0.0:0 LISTENING TCP 91.76.65.216:1719 212.58.226.20:80 ESTABLISHED TCP 91.76.65.216:1720 212.58.226.20:80 ESTABLISHED TCP 91.76.65.216:1723 212.58.227.138:80 CLOSE_WAIT TCP 91.76.65.216:1724 212.58.226.8:80 ESTABLISHED

В этом примере 0.0.0.0:135 - означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.

91.76.65.216:139 - наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.

Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).

Когда статья начинала формироваться, планировалось уложиться в одну, но к завершению, размеры статьи стали неподъемные, было решено разделить статью на две: теория сетей и работа сетевой подсистемы в линукс. Ну что ж, начнем с теории...

Стек протоколов TCP/IP

Собственно, что есть сеть ? Сеть - это более 2х компьютеров, объединенных между собой какими-то проводами каналами связи, в более сложном примере - каким-то сетевым оборудованием и обменивающиеся между собой информацией по определенным правилам. Эти правила "диктуются" стеком протоколов TCP/IP.

Transmission Control Protocol/Internet Protocol (Стек протоколов TCP/IP) - если сказать простым языком, это набор взаимодействующих протоколов разных уровней (можно дополнить, что каждый уровень взаимодействует с соседним, то есть состыковывается, поэтому и стек , имхо, так проще понять), согласно которым происходит обмен данными в сети. Каждый протокол - это набор правил, согласно которым происходит обмен данными. Итого, стек протоколов TCP/IP - это набор наборов правил Тут может возникнуть резонный вопрос: а зачем же иметь много протоколов? Неужели нельзя обмениваться всем по одному протоколу?

Все дело в том, что каждый протокол описывает строго отведенные ему правила. Кроме того, протоколы разделены по уровням функциональности, что позволяет работе сетевого оборудования и программного обеспечения становится гораздо проще, прозрачнее и выполнять "свой" круг задач. Для разделения данного набора протоколов по уровням была разработана модель сетевого взаимодействия OSI (англ. Open Systems Interconnection Basic Reference Model, 1978 г., она же - базовая эталонная модель взаимодействия открытых систем). Модель OSI состоит из семи различных уровней. Уровень отвечает за отдельный участок в работе коммуникационных систем, не зависит от рядом стоящих уровней – он только предоставляет определённые услуги. Каждый уровень выполняет свою задачу в соответствии с набором правил, называемым протоколом. Проиллюстрировать работу модели OSI можно следующим рисунком: Как передаются данные?

Из рисунка видно, что существует 7 уровней сетевого взаимодействия , которые делятся на: прикладной, представлений, сеансовый, транспортный, сетевой, канальный, физический . Каждый из уровней содержит свой набор протоколов. Список протоколов по уровням взаимодействия хорошо представлен в Википедии:

Сам стек протоколов TCP/IP развивался параллельно с принятием модели OSI и "не пересекался" с ней, в результате получилось небольшое разногласие в несоответствии стека протоколов и уровней модели OSI. Обычно, в стеке TCP/IP верхние 3 уровня (прикладной, представления и сеансовый ) модели OSI объединяют в один - прикладной . Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP относительно модели OSI можно представить так:

Данную модель сетевого взаимодействия еще называют модель DOD (от бурж. Department of Defense - Министерство обороны США). Итак, общее представление о сетевом взаимодействии рассмотрели. Для более глубокого понимания сути вопроса, могу посоветовать скачать и почитать книгу (Вито Амато "Основы организации сетей Cisco Т1 и Т2" ), ниже.

Адресация

В сети, построенной на стеке протоколов TCP/IP каждому хосту (компьютеру или устройству подключенному к сети) присвоен представляет собой 32-битовое двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. В общем случае, IP-адрес делиться на две части : адрес сети (подсети) и адрес хоста :

Как видно из иллюстрации, есть такое понятие как сеть и подсеть . Думаю, что из значений слов понятно, что IP адреса делятся на сети, а сети в свою очередь делятся на подсЕти с помощью маски подсетИ (корректнее будет сказать: адрес хоста может быть разбит на подсЕти ). Изначально, все IP адреса были поделены на определенные группы (классы адресов/сети). И существовала классовая адресация, согласно которой сети делились на строго определенные изолированные сети:

Нетрудно посчитать, что всего в пространстве адресов IP - 128 сетей по 16 777 216 адресов класса A, 16384 сети по 65536 адресов класса B и 2 097 152 сети по 256 адресов класса C, а также 268 435 456 адресов многоадресной рассылки и 134 317 728 зарезервированных адресов. С ростом сети Интернет эта система оказалась неэффективной и была вытеснена CIDR (бесклассовой адресацией), при которой количество адресов в сети определяется маской подсети.

Существует так же классификация IP адресов, как "частные" и "публичные". Под частные (они же локальные сети) сети зарезервированы следующие диапазоны адресов:

  • 10.0.0.0 - 10.255.255.255 (10.0.0.0/8 или 10/8),
  • 172.16.0.0 - 172.31.255.255 (172.16.0.0/12 или 172.16/12),
  • 192.168.0.0 - 192.168.255.255 (192.168.0.0/16 или 192.168/16).
  • 127.0.0.0 - 127.255.255.255 зарезервировано для петлевых интерфейсов (не используется для обмена между узлами сети), т.н. localhost

Кроме адреса хоста в сети TCP/IP есть такое понятие как порт. Порт является числовой характеристикой какого-то системного ресурса. Порт выделяется приложению, выполняемому на некотором сетевом хосте, для связи с приложениями, выполняемыми на других сетевых хостах (в том числе c другими приложениями на этом же хосте). С программной точки зрения, порт есть область памяти, которая контролируется каким-либо сервисом.

Для каждого из протоколов TCP и UDP стандарт определяет возможность одновременного выделения на хосте до 65536 уникальных портов, идентифицирующихся номерами от 0 до 65535. Соответствие номера порта и службы, использующей этот номер можно посмотреть в файле /etc/services или на сайте http://www.iana.org/assignments/port-numbers. Весь диапазон портов делиться на 3 группы:

  • 0 до 1023, называемые привилегированными или зарезервированными (используются для системных и некоторых популярных программ)
  • 1024 - 49151 называются зарегистрированными портами.
  • 49151 - 65535 называются динамическими портами.

IP протокол , как видно из иллюстраций находится ниже TCP и UDP в иерархии протоколов и отвечает за передачу и маршрутизацию информации в сети. Для этого, протокол IP заключает каждый блок информации (пакет TCP или UDP) в другой пакет - IP пакет или дейтаграмма IP, который хранит заголовок о источнике, получателе и маршруте.

Если провести аналогию с реальным миром, сеть TCP/IP - это город. Названия улиц и проулков - это сети и подсети. Номера строений - это адреса хостов. В строениях, номера кабинетов/квартир - это порты. Точнее, порты - это почтовые ящики, в которые ожидают прихода корреспонденции получатели (службы). Соответственно, номера портов кабинетов 1,2 и т.п. обычно отдаются директорам и руководителям, как привилегированным, а рядовым сотрудникам достаются номера кабинетов с большими цифрами. При отправке и доставке корреспонденции, информация упаковывается в конверты (ip-пакеты ), на которых указывается адрес отправителя (ip и порт ) и адрес получателя (ip и порт ). Простым языком как-то так...

Следует отметить, что протокол IP не имеет представления о портах, за интерпретацию портов отвечает TCP и UDP, по аналогии TCP и UDP не обрабатывают IP-адреса.

Для того чтобы не запоминать нечитаемые наборы цифр в виде IP-адресов, а указывать имя машины в виде человекопонятного имени "придумана" такая служба как DNS (Domain Name Service) , которая заботится о преобразовании имен хостов в IP адрес и представляет собой огромную распределенную базу данных. Об этой службе я обязательно напишу в будущих постах, а пока нам достаточно знать, что для корректного преобразования имен в адреса на машине должен быть запущен демон named или система должна быть настроена на использование службы DNS провайдера.

Маршрутизация

Давайте рассмотрим (на иллюстрации) пример инфраструктуры с несколькими подсетями. Может возникнуть вопрос, а как же один компьютер соединиться с другим? Откуда он знает, куда посылать пакеты?

Для разрешения этого вопроса, сети между собой соединены шлюзами (маршрутизаторами ). Шлюз - это тот же хост, но имеющий соединение с двумя и более сетями, который может передавать информацию между сетями и направлять пакеты в другую сеть. На рисунке роль шлюза выполняет pineapple и papaya , имеющих по 2 интерфейса, подключенные к разным сетям.

Чтобы определить маршрут передачи пакетов , IP использует сетевую часть адреса (маску подсети ). Для определения маршрута, на каждой машине в сети имеется таблица маршрутизации (routing table), которая хранит список сетей и шлюзов для этих сетей. IP "просматривает" сетевую часть адреса назначения в проходящем пакете и если для этой сети есть запись в таблице маршрутизации, то пакет отправляется на соответствующий шлюз.

В Linux ядро операционной системы хранит таблицу маршрутизации в файле /proc/net/route . Просмотреть текущую таблицу маршрутизации можно командой netstat -rn (r - routing table, n - не преобразовывать IP в имена) или route . Первая колонка вывода команды netstat -rn (Destination - назначение) содержит адреса сетей (хостов) назначения . При этом, при указании сети, адрес обычно заканчивается на ноль. Вторая колонка (Gateway) - адрес шлюза для указанного в первой колонке хоста/сети. Третья колонка (Genmask) - маска подсети, для которой работает данный маршрут. Колонка Flags дает информацию об адресе назначения (U - маршрут работает (Up), N - маршрут для сети (network), H - маршрут для хоста и т.п.). Колонка MSS показывает число байтов, которое может быть отправлено за 1 раз, Window - количество фреймов, которое может быть отправлено до получения подтверждения, irtt - статистика использования маршрута, Iface - указывает сетевой интерфейс, используемый для маршрута (eth0, eth1 и т.п.)

Как видно в примере ниже, первая запись (строка) указана для сети 128.17.75, все пакеты для данной сети будут отправлены на шлюз 128.17.75.20, который является IP адресом самого хоста. Вторая запись - это маршрут по умолчанию , который применяется ко всем пакетам, посылаемым в сети, не указанные в данной таблице маршрутизации. Здесь маршрут лежит через хост papaya (IP 128.17.75.98), который можно считать дверью во внешний мир. Данный маршрут должен быть прописан на всех машинах сети 128.17.75, которые должны иметь доступ к другим сетям. Третья запись создана для петлевого интерфейса . Данный адрес используется, если машине необходимо подключиться к самой себе по протоколу TCP/IP. Последняя запись в таблице маршрутизации сделана для IP 128.17.75.20 и направляется на интерфейс lo, т.о. при подключении машины к самой себе на адрес 128.17.75.20, все пакеты будут посылаться на интерфейс 127.0.0.1.

Если хост eggplant пожелает послать пакет хосту zucchini , (соответственно, в пакете будет указан отправитель - 128.17.75.20 и получатель - 128.17.75.37), протокол IP определит на основании таблицы маршрутизации, что оба хоста принадлежат одной сети и пошлет пакет прямо в сеть, где zucchini его получит. Если более подробно сказать.. сетевая карта широковещательно кричит ARP-запросом "Кто такой IP 128.17.75.37, это кричит 128.17.75.20?" все машины, получившие данное послание - игнорируют его, а хост с адресом 128.17.75.37 отвечает "Это я и мой MAC - адрес такой-то...", далее происходит соединение и обмен данными на основе arp таблиц , в которых занесено соответствие IP-MAC адресов. "Кричит", то есть этот пакет посылается всем хостам, это происходит потому что, MAC-адрес получателя указан широковещательный адрес (FF:FF:FF:FF:FF:FF). Такие пакеты получают все хосты сети.

Пример таблицы маршрутизации для хоста eggplant :

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.20 255.255.255.0 UN 1500 0 0 eth0 default 128.17.75.98 0.0.0.0 UGN 1500 0 0 eth0 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.20 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Давайте рассмотрим ситуацию, когда хост eggplant хочет послать пакет хосту, например, pear или еще дальше?.. В таком случае, получатель пакета будет - 128.17.112.21, протокол IP попытается найти в таблице маршрутизации маршрут для сети 128.17.112, но данного маршрута в таблице нет, по этому будет выбран маршрут по умолчанию , шлюзом которого является papaya (128.17.75.98). Получив пакет, papaya отыщет адрес назначения в своей таблице маршрутизации:

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.98 255.255.255.0 UN 1500 0 0 eth0 128.17.112.0 128.17.112.3 255.255.255.0 UN 1500 0 0 eth1 default 128.17.112.40 0.0.0.0 UGN 1500 0 0 eth1 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Из примера видно, что papaya подключена к двум сетям 128.17.75, через устройство eth0 и 128.17.112 через устройство eth1 . Маршрут по умолчанию , через хост pineapple , который в свою очередь, является шлюзом во внешнюю сеть.

Соответственно, получив пакет для pear , маршрутизатор papaya увидит, что адрес назначения принадлежит сети 128.17.112 и направит пакет в соответствии со второй записью в таблице маршрутизации.

Таким образом, пакеты передаются от маршрутизатора к маршрутизатору, пока не достигнут адреса назначения.

Стоит отметить, что в данных примерах маршруты

128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Не стандартные. И в современном linux вы такого не увидите.

Резюме

В данной статье я постарался как можно коротко и понятно описать основные понятия взаимодействия сетевой инфраструктуры на примере нескольких взаимосвязанных сетей, в следующей части я опишу работу сети в операционной системе Linux. Буду рад Вашим комментариям и дополнениям.

Предположим, что вы плохо владеете сетевыми технологиями, и даже не знаете элементарных основ. Но вам поставили задачу: в быстрые сроки построить информационную сеть на небольшом предприятии. У вас нет ни времени, ни желания изучать толстые талмуды по проектированию сетей, инструкции по использованию сетевого оборудования и вникать в сетевую безопасность. И, главное, в дальнейшем у вас нет никакого желания становиться профессионалом в этой области. Тогда эта статья для вас.


Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ: Заметки о Cisco Catalyst: настройка VLAN, сброс пароля, перепрошивка операционной системы IOS

Понятие о стеке протоколов

Задача - передать информацию от пункта А в пункт В. Её можно передавать непрерывно. Но задача усложняется, если надо передавать информацию между пунктами A<-->B и A<-->C по одному и тому же физическому каналу. Если информация будет передаваться непрерывно, то когда С захочет передать информацию в А - ему придётся дождаться, пока В закончит передачу и освободит канал связи. Такой механизм передачи информации очень неудобен и непрактичен. И для решения этой проблемы было решено разделять информацию на порции.

На получателе эти порции требуется составить в единое целое, получить ту информацию, которая вышла от отправителя. Но на получателе А теперь мы видим порции информации как от В так и от С вперемешку. Значит, к каждой порции надо вписать идентификационный номер, что бы получатель А мог отличить порции информации с В от порций информации с С и собрать эти порции в изначальное сообщение. Очевидно, получатель должен знать, куда и в каком виде отправитель приписал идентификационные данные к исходной порции информации. И для этого они должны разработать определённые правила формирования и написания идентификационной информации. Далее слово «правило» будет заменяться словом «протокол».

Для соответствия запросам современных потребителей, необходимо указывать сразу несколько видов идентификационной информации. А так же требуется защита передаваемых порций информации как от случайных помех (при передаче по линиям связи), так и от умышленных вредительств (взлома). Для этого порция передаваемой информации дополняется значительным количеством специальной, служебной информацией.

В протоколе Ethernet находятся номер сетевого адаптера отправителя (MAC-адрес), номер сетевого адаптера получателя, тип передаваемых данных и непосредственно передаваемые данные. Порция информации, составленная в соответствии с протоколом Ethernet, называется кадром. Считается, что сетевых адаптеров с одинаковым номером не существует. Сетевое оборудование извлекает передаваемые данные из кадра (аппаратно или программно), и производит дальнейшую обработку.

Как правило, извлечённые данные в свою очередь сформированы в соответствии с протоколом IP и имеют другой вид идентификационной информации - ip адрес получателя (число размером в 4 байта), ip адрес отправителя и данные. А так же много другой необходимой служебной информации. Данные, сформированные в соответствии с IP протоколом, называются пакетами.

Далее извлекаются данные из пакета. Но и эти данные, как правило, ещё не являются изначально отправляемыми данными. Этот кусок информации тоже составлен в соответствии определённому протоколу. Наиболее широко используется TCP протокол. В нём содержится такая идентификационная информация, как порт отправителя (число размером в два байта) и порт источника, а так же данные и служебная информация. Извлечённые данные из TCP, как правило, и есть те данные, которые программа, работающая на компьютере В, отправляла «программе-приёмнику» на компьютере A.

Вложность протоколов (в данном случае TCP поверх IP поверх Ethernet) называется стеком протоколов.

ARP: протокол определения адреса

Существуют сети классов A, B, C, D и E. Они различаются по количеству компьютеров и по количеству возможных сетей/подсетей в них. Для простоты, и как наиболее часто встречающийся случай, будем рассматривать лишь сеть класса C, ip-адрес которой начинается на 192.168. Следующее число будет номером подсети, а за ним - номер сетевого оборудования. К примеру, компьютер с ip адресом 192.168.30.110 хочет отправить информацию другому компьютеру с номером 3, находящемуся в той же логической подсети. Это значит, что ip адрес получателя будет такой: 192.168.30.3

Важно понимать, что узел информационной сети - это компьютер, соединённый одним физическим каналом с коммутирующим оборудованием. Т.е. если мы отправим данные с сетевого адаптера «на волю», то у них одна дорога - они выйдут с другого конца витой пары. Мы можем послать совершенно любые данные, сформированные по любому, выдуманному нами правилу, ни указывая ни ip адреса, ни mac адреса ни других атрибутов. И, если этот другой конец присоединён к другому компьютеру, мы можем принять их там и интерпретировать как нам надо. Но если этот другой конец присоединён к коммутатору, то в таком случае пакет информации должен быть сформирован по строго определённым правилам, как бы давая коммутатору указания, что делать дальше с этим пакетом. Если пакет будет сформирован правильно, то коммутатор отправит его дальше, другому компьютеру, как было указано в пакете. После чего коммутатор удалит этот пакет из своей оперативной памяти. Но если пакет был сформирован не правильно, т.е. указания в нём были некорректны, то пакет «умрёт», т.е. коммутатор не будет отсылать его куда либо, а сразу удалит из своей оперативной памяти.

Для передачи информации другому компьютеру, в отправляемом пакете информации надо указать три идентификационных значения - mac адрес, ip адрес и порт. Условно говоря, порт - это номер, который, выдаёт операционная система каждой программе, которая хочет отослать данные в сеть. Ip адрес получателя вводит пользователь, либо программа сама получает его, в зависимости от специфики программы. Остаётся неизвестным mac адрес, т.е. номер сетевого адаптера компьютера получателя. Для получения необходимой данной, отправляется «широковещательный» запрос, составленный по так называемому «протоколу разрешения адресов ARP». Ниже приведена структура ARP пакета.

Сейчас нам не надо знать значения всех полей на приведённой картинке. Остановимся лишь на основных.

В поля записываются ip адрес источника и ip адрес назначения, а так же mac адрес источника.

Поле «адрес назначения Ethernet» заполняется единицами (ff:ff:ff:ff:ff:ff). Такой адрес называется широковещательным, и такой фрейм будер разослан всем «интерфейсам на кабеле», т.е. всем компьютерам, подключённым к коммутатору.

Коммутатор, получив такой широковещательный фрейм, отправляет его всем компьютерам сети, как бы обращаясь ко всем с вопросом: «если Вы владелец этого ip адреса (ip адреса назначения), пожалуйста сообщите мне Ваш mac адрес». Когда другой компьютер получает такой ARP запрос, он сверяет ip адрес назначения со своим собственным. И если он совпадает, то компьютер, на место единиц вставляет свой mac адрес, меняет местами ip и mac адреса источника и назначения, изменяет некоторую служебную информацию и отсылает пакет обратно коммутатору, а тот обратно - изначальному компьютеру, инициатору ARP запроса.

Таким образом ваш компьютер узнаёт mac адрес другого компьютера, которому вы хотите отправить данные. Если в сети находится сразу несколько компьютеров, отвечающих на этот ARP запрос, то мы получаем «конфликт ip адресов». В таком случае необходимо изменить ip адрес на компьютерах, что бы в сети не было одинаковых ip адресов.

Построение сетей

Задача построения сетей

На практике, как правило, требуется построить сети, число компьютеров в которой будет не менее ста. И кроме функций файлообмена, наша сеть должна быть безопасной и простой в управлении. Таким образом, при построении сети, можно выделить три требования:
  1. Простота в управлении. Если бухгалтера Лиду переведут в другой кабинет, ей по-прежнему понадобится доступ к компьютерам бухгалтеров Анны и Юлии. И при неправильном построении своей информационной сети, у администратора могут возникнуть трудности в выдаче Лиде доступа к компьютерам других бухгалтеров на её новом месте.
  2. Обеспечение безопасности. Для обеспечения безопасности нашей сети, права доступа к информационным ресурсам должны быть разграничены. Так же сеть должна быть защищена от угроз раскрытия, целостности и отказа в обслуживании. Подробнее читайте в книге «Атака на Internet» автора Илья Давидович Медведовский, глава «Основные понятия компьютерной безопасности» .
  3. Быстродействие сети. При построении сетей есть техническая проблема - зависимость скорости передачи от количества компьютеров в сети. Чем больше компьютеров - тем ниже скорость. При большом количестве компьютеров, быстродействие сети может стать настолько низким, что она станет неприемлемой заказчику.
Из-за чего при большом количестве компьютеров снижается скорость сети? - причина проста: из-за большого количества широковещательных сообщений (ШС). ШС - это сообщение, которое, приходя на коммутатор, отправляется всем хостам сети. Или, грубо говоря, всем компьютерам, находящимся в вашей подсети. Если компьютеров в сети 5, то каждый компьютер будет принимать по 4 ШС. Если их будет 200, то каждый компьютер в такой большой сети будет принимать по 199 ШС.

Существует большое множество приложений, программных модулей и сервисов, которые, для своей работы отправляют в сеть широковещательные сообщения. Описанный в пункте ARP: протокол определения адреса лишь один из множества ШС, отправляемый вашим компьютером в сеть. Например, когда вы заходите в «Сетевое окружение» (ОС Windows), ваш компьютер посылает ещё несколько ШС со специальной информацией, сформированной по протоколу NetBios, что бы просканировать сеть на наличие компьютеров, находящихся в той же рабочей группе. После чего ОС рисует найденные компьютеры в окне «Сетевое окружение» и вы их видите.

Так же стоит заметить, что во время процесса сканирования той или иной программой, ваш компьютер отсылает ни одно широковещательное сообщение, а несколько, к примеру для того, что бы установить с удалёнными компьютерами виртуальные сессии или ещё для каких либо системных нужд, вызванных проблемами программной реализации этого приложения. Таким образом, каждый компьютер в сети для взаимодействия с другими компьютерами вынужден посылать множество различных ШС, тем самым загружая канал связи не нужной конечному пользователю информацией. Как показывает практика, в больших сетях широковещательные сообщения могут составить значительную часть трафика, тем самым замедляя видимую для пользователя работу сети.

Виртуальные локальные сети

Для решения первой и третьей проблем, а так же в помощь решения второй проблемы, повсеместно используют механизм разбиения локальной сети на более маленькие сети, как бы отдельные локальные сети (Virtual Local Area Network). Грубо говоря, VLAN - это список портов на коммутаторе, принадлежащих одной сети. «Одной» в том смысле, что другой VLAN будет содержать список портов, принадлежащих другой сети.

Фактически, создание двух VLAN-ов на одном коммутаторе эквивалентно покупке двух коммутаторов, т.е. создание двух VLAN-ов - это всё равно, что один коммутатор разделить на два. Таким образом происходит разбиение сети из ста компьютеров на более маленькие сети, из 5-20 компьютеров - как правило именно такое количество соответствует физическому местонахождению компьютеров по надобности файлообмена.

  • При разбиении сети на VLAN-ы достигается простота управления. Так, при переходе бухгалтера Лиды в другой кабинет, администратору достаточно удалить порт из одного VLAN-а и добавить в другой. Подробнее это рассмотрено в пункте VLAN-ы, теория.
  • VLAN-ы помогают решить одно из требований к безопасности сети, а именно разграничение сетевых ресурсов. Так, студен из одной аудитории не сможет проникнуть на компьютеры другой аудитории или компьютер ректора, т.к. они находятся в фактически разных сетях.
  • Т.к. наша сеть разбита на VLAN-ы, т.е. на маленькие «как бы сети», пропадает проблема с широковещательными сообщениями.

VLAN-ы, теория

Возможно, фраза «администратору достаточно удалить порт из одного VLAN-а и добавить в другой» могла оказаться непонятной, поэтому поясню её подробнее. Порт в данном случае - это не номер, выдаваемый ОС приложению, как было рассказано в пункте Стек протоколов, а гнездо (место) куда можно присоединить (вставить) коннектор формата RJ-45. Такой коннектор (т.е. наконечник к проводу) прикрепляется к обоим концам 8-ми жильного провода, называемого «витая пара». На рисунке изображён коммутатор Cisco Catalyst 2950C-24 на 24 порта:
Как было сказано в пункте ARP: протокол определения адреса каждый компьютер соединён с сетью одним физическим каналом. Т.е. к коммутатору на 24 порта можно присоединить 24 компьютера. Витая пара физически пронизывает все помещения предприятия - все 24 провода от этого коммутатора тянутся в разные кабинеты. Пусть, к примеру, 17 проводов идут и подсоединяются к 17-ти компьютерам в аудитории, 4 провода идут в кабинет спецотдела и оставшиеся 3 провода идут в только что отремонтированный, новый кабинет бухгалтерии. И бухгалтера Лиду, за особые заслуги, перевели в этот самый кабинет.

Как сказано выше, VLAN можно представлять в виде списка принадлежащих сети портов. К примеру, на нашем коммутаторе было три VLAN-а, т.е. три списка, хранящиеся во flash-памяти коммутатора. В одном списке были записаны цифры 1, 2, 3… 17, в другом 18, 19, 20, 21 и в третьем 22, 23 и 24. Лидин компьютер раньше был присоединён к 20-ому порту. И вот она перешла в другой кабинет. Перетащили её старый компьютер в новый кабинет, или она села за новый компьютер - без разницы. Главное, что её компьютер присоединили витой парой, другой конец которой вставлен в порт 23 нашего коммутатора. И для того, что бы она со своего нового места могла по прежнему пересылать файлы своим коллегам, администратор должен удалить из второго списка число 20 и добавить число 23. Замечу, что один порт может принадлежать только одному VLAN-у, но мы нарушим это правило в конце этого пункта.

Замечу так же, что при смене членства порта в VLAN, администратору нет никакой нужды «перетыкать» провода в коммутаторе. Более того, ему даже не надо вставать с места. Потому что компьютер администратора присоединён к 22-ому порту, с помощью чего он может управлять коммутатором удалённо. Конечно, благодаря специальным настройкам, о которых будет рассказано позже, лишь администратор может управлять коммутатором. О том, как настраивать VLAN-ы, читайте в пункте VLAN-ы, практика [в следующей статье].

Как вы, наверное, заметили, изначально (в пункте Построение сетей) я говорил, что компьютеров в нашей сети будет не менее 100. Но к коммутатору можно присоединить лишь 24 компьютера. Конечно, есть коммутаторы с большим количеством портов. Но компьютеров в корпоративной сети/сети предприятия всё равно больше. И для соединения бесконечно большого числа компьютеров в сеть, соединяют между собой коммутаторы по так называемому транк-порту (trunk). При настройки коммутатора, любой из 24-портов можно определить как транк-порт. И транк-портов на коммутаторе может быть любое количество (но разумно делать не более двух). Если один из портов определён как trunk, то коммутатор формирует всю пришедшую на него информацию в особые пакеты, по протоколу ISL или 802.1Q, и отправляет эти пакеты на транк-порт.

Всю пришедшую информацию - имеется в виду, всю информацию, что пришла на него с остальных портов. А протокол 802.1Q вставляется в стек протоколов между Ethernet и тем протоколом, по которому были сформированные данные, что несёт этот кадр.

В данном примере, как вы, наверное, заметили, администратор сидит в одном кабинете вместе с Лидой, т.к. витая пора от портов 22, 23 и 24 ведёт в один и тот же кабинет. 24-ый порт настроен как транк-порт. А сам коммутатор стоит в подсобном помещении, рядом со старым кабинетом бухгалтеров и с аудиторией, в которой 17 компьютеров.

Витая пара, которая идёт от 24-ого порта в кабинет к администратору, подключается к ещё одному коммутатору, который в свою очередь, подключён к роутеру, о котором будет рассказано в следующих главах. Другие коммутаторы, которые соединяют другие 75 компьютеров и стоят в других подсобных помещениях предприятия - все они имеют, как правило, один транк-порт, соединённый витой парой или по оптоволокну с главным коммутатором, что стоит в кабинете с администратором.

Выше было сказано, что иногда разумно делать два транк-порта. Второй транк-порт в таком случае используется для анализа сетевого трафика.

Примерно так выглядело построение сетей больших предприятий во времена коммутатора Cisco Catalyst 1900. Вы, наверное, заметили два больших неудобства таких сетей. Во первых, использование транк-порта вызывает некоторые сложности и создаёт лишнюю работу при конфигурировании оборудования. А во вторых, и в самых главных - предположим, что наши «как бы сети» бухгалтеров, экономистов и диспетчеров хотят иметь одну на троих базу данных. Они хотят, что бы та же бухгалтерша смогла увидеть изменения в базе, которые сделала экономистка или диспетчер пару минут назад. Для этого нам надо сделать сервер, который будет доступен всем трём сетям.

Как говорилось в середине этого пункта, порт может находиться лишь в одном VLAN-е. И это действительно так, однако, лишь для коммутаторов серии Cisco Catalyst 1900 и старше и у некоторых младших моделей, таких как Cisco Catalyst 2950. У остальных коммутаторов, в частности Cisco Catalyst 2900XL это правило можно нарушить. При настройке портов в таких коммутаторах, каждый пор может иметь пять режимов работы: Static Access, Multi-VLAN, Dynamic Access, ISL Trunk и 802.1Q Trunk. Второй режим работы именно то, что нам нужно для выше поставленной задачи - дать доступ к серверу сразу с трёх сетей, т.е. сделать сервер принадлежащим к трём сетям одновременно. Так же это называется пересечением или таггированием VLAN-ов. В таком случае схема подключения может быть такой.