Что такое мультиплексор сетевого адаптера. Протокол мультиплексора сетевого адаптера – что это

Что такое мультиплексор сетевого адаптера. Протокол мультиплексора сетевого адаптера – что это
Что такое мультиплексор сетевого адаптера. Протокол мультиплексора сетевого адаптера – что это

Вторым использующимся в настоящее время на практике подходом является использование в рабочих станциях технологии мультиплексирования различных стеков протоколов.

При мультиплексировании стеков протоколов на один из двух взаимодействующих компьютеров с различными стеками протоколов помещается коммуникационный стек другого компьютера. На рис. 4.3 приведен пример взаимодействия клиентского компьютера сети 1 с сервером своей сети и сервером сети 2, работающей со стеком протоколов, полностью отличающимся от стека сети 1. В клиентском компьютере реализованы оба стека. Для того, чтобы запрос от прикладного процесса был правильно обработан и направлен через соответствующий стек, в компьютер необходимо добавить специальный программный элемент - мультиплексор протоколов. Мультиплексор должен уметь определять, к какой сети направляется запрос клиента. Для этого может использоваться служба имен сети, в которой отмечается принадлежность того или иного ресурса определенной сети с соответствующим стеком протоколов.

При использовании технологии мультиплексирования структура коммуникационных средств операционной системы может быть и более сложной. В общем случае на каждом уровне вместо одного протокола появляется целый набор протоколов, а мультиплексоров может быть несколько, выполняющих коммутацию между протоколами разных уровней (рис. 4.4). Например, рабочая станция может получить доступ к сетям с протоколами NetBIOS, IP, IPX через один сетевой адаптер. Аналогично, сервер, поддерживающий прикладные протоколы NCP, SMB и NFS может без проблем выполнять запросы рабочих станций сетей NetWare, Windows NT и Sun одновременно.

Рис. 4.3. Мультиплексирование стеков

Предпосылкой для развития технологии мультиплексирования стеков протоколов стало строгое определения протоколов и интерфейсов различных уровней и их открытое описание, так, чтобы фирма при реализации "чужого" протокола или интерфейса могла быть уверена, что ее продукт будет правильно взаимодействовать с продуктами других фирм по данному протоколу.

Не так давно, автор этих строк столкнулся с неприятной ситуацией – один из компьютеров, отлично работающий ранее, был подключен к роутеру на новом месте с помощью проводного соединения. От этого роутера исправно получают интернет несколько устройств, а вот сам новичок работать отказывался, выдавая ошибку: “Сетевой адаптер не имеет допустимых параметров настройки IP”.

То есть патч-корд, он же кабель Ethernet, отлично обеспечивает интернетом исправно гудящий системный блок, а при подключении к многострадальному системнику последний упорно игнорирует подключенный интернет.

Что эта за ошибка, и как от нее избавиться – давайте разбираться вместе.

Пробуем выключить и включить

Признаюсь сразу – в моем случае мне помог старый добрый способ. Я просто обесточил роутер, а потом заново подсоединил его к электрической сети, и все заработало самостоятельно. Однако, до того, как я попробовал этот чудодейственный метод, мне пришлось основательно изучить проблему.

Поэтому, первым делом попробуйте “выключить, а потом снова включить” Ваше проблемное устройство, а также перезагрузите роутер. Ну а вдруг – мне же в итоге помогло?

Также Вы можете включить и отключить интернет-подключение вручную. Для этого пройдите в меню “Изменение параметров адаптера”. Отыскать его можно следующим способом:

Нажмите правой кнопкой мышки на иконку соединения и выберите “Центр управления..”

Также Вы можете воспользоваться следующим способом: нажмите на клавиатуре Win + R , наберите ncpa.cpl и подтвердите ввод клавишей Enter .

В открывшемся окне выберите свое соединение и нажмите отключить, а потом точно также, с помощью правой кнопки мышки, нажмите включить.

Проверяем соединение. Не помогло? Двигаемся дальше.

Обновляем IP адрес

Пробуем обновить IP адрес автоматически. Для этого мы используем командную строку.

Запускаем командную строку и вводим следующий код:

ipconfig /release

ipconfig /renew

Этот способ самый безопасный, и, скорее всего, самый бесполезный.

Сбрасываем протокол TCP/IP

Попробуем сбросить сетевые настройки. Для этого вновь используем командную строку, а затем вводим следующие запросы:

netsh int ip reset

netsh int tcp reset

netsh winsock reset

После перезагружаем компьютер. Опять не то? Пробуем следующее.

Пробуем другие способы решения ошибки: “Сетевой адаптер не имеет допустимых параметров настройки IP”

  • Попробуйте отключить антивирус или сторонний фаервол.
  • Удалите Сетевой адаптер в Диспетчере устройств , и перезагрузитесь. После подобной экзекуции произойдет автоматическая переустановка драйверов. Если не произошла, попробуйте скачать драйвера с официального сайта производителя.
  • Удалите программу Bonjour от Apple, если она установлена у Вас – иногда она бывает причиной сбоя.
  • Проверьте, не отключена ли сетевая карта в BIOS .

Надеюсь, Ваша проблема решиться также легко и безболезненно, как и в моем случае. На всякий случай стоит проверить исправность кабеля и сетевого адаптера. Попробуйте отсоединить и подсоединить кабель обратно. Обновите драйвера, операционную систему. Если не помогло, может, стоит

Вторым использующимся в настоящее время на практике подходом является использование в рабочих станциях технологии мультиплексирования различных стеков протоколов.

Рис. 3.15. Мультиплексирование стеков

При мультиплексировании стеков протоколов на один из двух взаимодействующих компьютеров с различными стеками протоколов помещается коммуникационный стек другого компьютера. На рисунке 3.15 приведен пример взаимодействия клиентского компьютера сети 1 с сервером своей сети и сервером сети 2, работающей со стеком протоколов, полностью отличающимся от стека сети 1. В клиентском компьютере реализованы оба стека. Для того, чтобы запрос от прикладного процесса был правильно обработан и направлен через соответствующий стек, в компьютер необходимо добавить специальный программный элемент - мультиплексор протоколов. Мультиплексор должен уметь определять, к какой сети направляется запрос клиента. Для этого может использоваться служба имен сети, в которой отмечается принадлежность того или иного ресурса определенной сети с соответствующим стеком протоколов.

При использовании технологии мультиплексирования структура коммуникационных средств операционной системы может быть и более сложной. В общем случае на каждом уровне вместо одного протокола появляется целый набор протоколов, а мультиплексоров может быть несколько, выполняющих коммутацию между протоколами разных уровней (рисунок 3.16). Например, рабочая станция может получить доступ к сетям с протоколами NetBIOS, IP, IPX через один сетевой адаптер. Аналогично, сервер, поддерживающий прикладные протоколы NCP, SMB и NFS может без проблем выполнять запросы рабочих станций сетей NetWare, Windows NT и Sun одновременно.

Рис. 3.16. Мультиплексирование протоколов

Предпосылкой для развития технологии мультиплексирования стеков протоколов стало строгое определения протоколов и интерфейсов различных уровней и их открытое описание, так, чтобы фирма при реализации "чужого" протокола или интерфейса могла быть уверена, что ее продукт будет правильно взаимодействовать с продуктами других фирм по данному протоколу.

Использование магистрального протокола

Хорошим решением был бы переход на единый стек протоколов, но вряд ли эта перспектива осуществится в ближайшем будущем. Попытка введения единого стека коммуникационных протоколов сделана в 1990 году правительством США, которое обнародовало программу GOSIP - Government OSI Profile, в соответствии с которой стек протоколов OSI должен стать общим знаменателем для всех сетей, устанавливаемых в правительственных организациях США. Но, понимая бесполезность силовых мер, программа GOSIP не ставит задачу немедленного перехода на стек OSI, а принуждает пока к использованию этого стека в качестве "второго языка" правительственных сетей, наряду с родным, первым.

Вопросы реализации

При объединении сетей различных типов в общем случае необходимо обеспечить двухстороннее взаимодействие сетей, то есть решить две задачи (рисунок 3.17):

1. Обеспечение доступа клиентам сети A к ресурсам и сервисам серверов сети B.

2. Обеспечение доступа клиентам сети B к ресурсам и сервисам сети A.

Рис. 3.17. Варианты сетевого взаимодействия

Эти задачи независимы и их можно решать отдельно. Прежде всего нужно понять, необходимо ли полное решение или достаточно и частичного, то есть нужно ли, чтобы пользователи, например, UNIX-машин имели доступ к ресурсам серверов сети NetWare, а пользователи персональных машин имели доступ к ресурсам UNIX-хостов, или же достаточно обеспечить доступ к ресурсам другой сети только одному виду пользователей.

Кроме того, каждую из этих задач можно в свою очередь разделить на части. В сети обычно имеются различные виды разделяемых ресурсов, и с каждым типом ресурсов могут предоставляться различные виды сервиса. Например, в UNIX-сетях файлы являются разделяемым ресурсом, и с ними связаны два вида сервиса - перемещение файлов между машинами по протоколу FTP и монтирование удаленной файловой системы по протоколу NFS. Поэтому при объединении сетей можно предложить пользователям набор средств, каждое из которых позволяет воспользоваться одним каким-либо сервисом чужой сети. Естественно, возможно объединение всех функций в рамках одного продукта.

При объединении сетей достаточно иметь средства взаимодействия сетей только в одной из сетей. Например, фирма Novell разработала ряд программных продуктов для связи с UNIX-сетями, которые достаточно включить в программное обеспечение сети NetWare, чтобы решить обе указанные задачи взаимодействия сетей. При этом серверной части UNIX клиент NetWare представляется UNIX-клиентом, а клиент UNIX обращается с файлами и принтерами, управляемыми сервером NetWare, как с UNIX-файлами и UNIX-принтерами. Возможен перенос средств взаимодействия сетей и на сторону UNIX-сети. Тогда аналогичные функции будут выполнять программные средства на UNIX-машине.

В то время, как расположение программных средств, реализующих шлюз, уже было определено - они должны располагаться на компьютере, занимающем промежуточное положение между двумя взаимодействующими машинами, вопрос о размещении дополнительных стеков протоколов остался открытым. Заметим также, что шлюз реализует взаимодействие "многие-ко-многим" (все клиенты могут обращаться ко всем серверам).

Рассмотрим все возможные варианты размещения программных средств, реализующих взаимодействие двух сетей, которые основаны на мультиплексировании протоколов. Введем некоторые обозначения: С - сервер, К - клиент, (- дополнительный протокол или стек протоколов.

На рисунке 3.18 показаны оба возможных варианта однонаправленного взаимодействия А®В: а) путем добавления нового стека к клиентам сети А, либо б) путем присоединения "добавки" к серверам сети В.

В первом случае, когда средства мультиплексирования располагаются на клиентских частях, только клиенты, снабженные средствами мультиплексирования протоколов, могут обращаться к серверам сети В, при этом они могут обращаться ко всем серверам сети В. Во втором случае, когда набор стеков расположен на каком-либо сервере сети В, данный сервер может обслуживать всех клиентов сети А. Очевидно, что серверы сети В без средств мультиплексирования не могут быть использованы клиентами сети А.

Рис. 3.18. Варианты размещения программных средств (С - cервер, К - клиент, (- средства сетевого взаимодействия)

Примером "добавки", модифицирующей клиентскую часть, может служить популярное программное средство фирмы Novell LAN Workplace, которое превращает клиента NetWare в клиента UNIX. Аналогичным примером для модификации сервера могут служить другие продукты фирмы Novell: NetWare for UNIX, который делает возможным использование услуг сервера UNIX клиентами NetWare, или Novell NetWare for VMS, который служит для тех же целей в сети VMS.

Взаимодействие А (В реализуется симметрично.

Если же требуется реализовать взаимодействие в обе стороны одновременно, то для этого существует четыре возможных варианта, показанных на рисунке 3.19. Каждый вариант имеет свои особенности с точки зрения возможностей связи клиентов с серверами:

    Средства обеспечения взаимодействия расположены только на клиентских частях обеих сетей. Для тех и только тех клиентов обеих сетей, которые оснащены "добавками", гарантируется возможность связи со всеми серверами из "чужой" сети.

    Все средства обеспечения взаимодействия расположены на стороне сети А. Все клиенты сети В могут обращаться к серверам сети А (не ко всем , а только к тем, которые имеют сетевую "добавку").Часть клиентов сети А, которые обозначены как К+(, могут обращаться ко всем серверам сети В.

    Средства межсетевого взаимодействия расположены только на серверных частях обеих сетей. Всем клиентам обеих сетей гарантируется возможность работы с серверами "чужих" сетей, но не со всеми , а только с серверами, обладающими сетевыми средствами мультиплексирования протоколов.

    Все средства межсетевого взаимодействия расположены на стороне В. Двусторонний характер взаимодействия обеспечивается модификацией и клиентских, и серверных частей сети В. Все клиенты сети А могут обращаться за сервисом к серверам сети В, обозначенным как С+(, а все серверы сети А могут обслуживать клиентов сети В, обозначенных как К+(.

Рис. 3.19. Варианты размещения программных средств при двустороннем взаимодействии (С - cервер, К - клиент, (- средства сетевого взаимодействия)

Очевидно, что наличие программных продуктов для каждого из рассмотренных вариантов сильно зависит от конкретной пары операционных систем. Для некоторых пар может вовсе не найтись продуктов межсетевого взаимодействия, а для некоторых можно выбирать из нескольких вариантов. Рассмотрим в качестве примера набор программных продуктов, реализующих взаимодействие Windows NT и NetWare. В ОС Windows NT и в серверной части (Windows NT Server), и в клиентских частях (Windows NT Workstation) предусмотрены встроенные средства мультиплексирования нескольких протоколов, в том числе и стека IPX/SPX. Следовательно эта операционная система может поддерживать двустороннее взаимодействие (по варианту 2) с NetWare без каких-либо дополнительных программных средств. Аналогичным образом реализуется взаимодействие сетей Windows NT с UNIX-сетями.

Если при попытке диагностики неполадок при неработающем Интернете или локальной сети в Windows 10 вы получаете сообщение о том, что на этом компьютере отсутствуют один или несколько сетевых протоколов, в инструкции ниже предлагается несколько способов исправить проблему, один из которых, надеюсь вам поможет.

Однако, прежде чем начать, рекомендую отключить и подключить заново кабель к сетевой карте ПК и (или) к роутеру (в том числе проделать то же самое с кабелем WAN к роутеру, если у вас подключение по Wi-Fi), так как случается, что проблема «отсутствуют сетевые протоколы» вызвана именно плохим подключением сетевого кабеля.

Еще один способ исправить проблему с подключением и Интернетом в данной ситуации, срабатывающий для некоторых пользователей Windows 10 - отключение NetBIOS для сетевого подключения.

Попробуйте по шагам выполнить следующее:

Примените сделанные настройки и перезагрузите компьютер, а затем проверьте, заработало ли подключение так, как нужно.

Программы, вызывающие ошибку с сетевыми протоколами Windows 10

Подобные проблемы с Интернетом могут вызывать и сторонние программы, устанавливаемые на компьютер или ноутбук и какими-либо хитрыми способами использующие сетевые подключения (мосты, создание виртуальных сетевых устройств и т.д.).

Среди замеченных в вызывающих описываемую проблему - LG Smart Share, но это могут быть и другие похожие программы, а также виртуальные машины, эмуляторы Android и подобного рода ПО. Так же, если в последнее время в Windows 10 что-то менялось в части антивируса или фаервола, это тоже могло вызывать проблему, проверьте.

Другие способы исправить проблему

Прежде всего, если проблема у вас возникла внезапно (т.е. ранее все работало, а систему вы не переустанавливали), возможно, вам смогут помочь .

В остальных же случаях чаще всего причиной проблемы с сетевыми протоколами (если вышеописанные методы не помогли) являются не те драйвера на сетевой адаптер (Ethernet или Wi-Fi). При этом в диспетчере устройств вы все так же будете видеть, что «устройство работает нормально», а драйвер не нуждается в обновлении.

Как правило, помогает либо откат драйвера (в диспетчере устройств - правый клик по устройству - свойства, кнопка «откатить» на вкладке «драйвер», либо принудительная установка «старого» официального драйвера производителя ноутбука или материнской платы компьютера. Подробные шаги описаны в двух руководствах, которые упомянуты в начале этой статьи.

В связи с тем, что вычислительные сети используются для передачи данных на большие расстояния, то стремятся минимизировать количество проводов в кабеле, в целях экономии. Поэтому разрабатывались технологии, которые позволяют передавать, по одному и тому же каналу связи, сразу несколько потоков данных.

(англ. multiplexing, muxing)- это процесс уплотнение канала связи, другими словами, передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу связи, с использованием специального устройства, называемого мультиплексором.

Мультиплексор (MUX) - комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Может быть реализован как аппаратно так и программно.

Демультиплексор (DMX) выполняет обратную функцию мультиплексора.

В настоящее время, для уплотнения канала связи, в основном используют:

  • Временное мультиплексирование (Time Division Multiplexing, TDM)
  • Частотное мультиплексирование (Frequency Division Multiplexing, FDM)
  • Волновое мультиплексирование (Wave Division Multiplexing, WDM)
  • Множественный доступ с кодовым разделением (CodeDivisionMultipleAccess, CDMA) - каждый канал имеет свой код наложение которого на групповой сигнал позволяет выделить информацию конкретного канала.

Временное мультиплексирование

Первой стали применять технологию TDM, которая широко используется в обычных системах электросвязи. Эта технология предусматривает объединение нескольких входных низкоскоростных каналов в один составной высокоскоростной канал.

Мультиплексор принимает информацию по N входным каналам от конечных абонентов, каждый из которых передает данные по абонентскому каналу со скоростью 64 Кбит/с -1 байт каждые 125 мкс.

В каждом цикле мультиплексор выполняет следующие действия:

  • прием от каждого канала очередного байта данных;
  • составление из принятых байтов уплотненного кадра, называемого также обоймой;
  • передача уплотненного кадра на выходной канал с битовой скоростью, равной N*64 Кбит/с.

Порядок байт в обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Например, мультиплексор Т1, представляющий собой первый промышленный мультиплексор, работавший по технологии TDM, поддерживает 24 входных абонентских канала, создавая на выходе обоймы стандарта Т1, передаваемые с битовой скоростью 1,544 Мбит/с.

Демультиплексор выполняет обратную задачу - он разбирает байты уплотненного кадра и распределяет их по своим нескольким выходным каналам, при этом он считает, что порядковый номер байта в обойме соответствует номеру выходного канала.

В рамках TDM различают:

  • синхронное мультиплексирование (каждому приложению соответствует тайм-слот (возможно несколько тайм-слотов) с определенным порядковым номером в периодической последовательности слотов;
  • асинхронное или статистическое мультиплексирование, когда приписывание тайм-слотов приложениям происходит более свободным образом, например, по требованию.

Частотное мультиплексирование

Техника частотного мультиплексирования разрабатывалась для телефонных сетей. Основная идея состоит в выделении каждому соединению собственного диапазона частот в общей полосе пропускания линии связи. Мультиплексирование выполняется с помощь смесителя частот, а демультиплексирование – с помощью узкополосного фильтра, ширина которого равна ширине диапазона канала.

Волновое или спектральное мультиплексирование

В методе волнового мультиплексирования используется тот же принцип частотного разделения канала, но только в другой области электромагнитного спектра. Информационным сигналом является не электрический ток, а свет. Для организации WDM-каналов в волоконно-оптическом кабеле задействуют волны инфракрасного диапазона длиной от 850 до 1565 нм, что соответствует частотам от 196 до 350 ТГц.

Для повышения пропускной способности, вместо увеличения скорости передачи в едином составном канале, как это реализовано в технологии TDM, в технологии WDM увеличивают число каналов (длин волн) - лямбд.

Сети WDM работают по принципу коммутации каналов, при этом каждая световая волна представляет собой отдельный спектральный канал и несет собственную информацию.

Современные WDM системы на основе стандартного частотного плана (ITU-T Rec. G.692) можно подразделить на три группы:

  • грубые WDM (Coarse WDM- CWDM)-системы с частотным разносом каналов не менее 200 ГГц, позволяющие мультиплексировать не более 18 каналов. (Используемые в настоящее время CWDM работают в полосе от 1270нм до 1610нм, промежуток между каналами 20нм(200ГГц), можно мультиплексировать 16 спектральных каналов.);
  • плотные WDM (Dense WDM-DWDM)-системы с разносом каналов не менее 100 ГГц, позволяющие мультиплексировать не более 40 каналов;
  • высокоплотные WDM (High Dense WDM-HDWDM)-системы с разносом каналов 50 ГГц и менее, позволяющие мультиплексировать не менее 64 каналов.