В столбце расчетный объем звукового файла. Кодирование и обработка звуковой информации

В столбце расчетный объем звукового файла. Кодирование и обработка звуковой информации
В столбце расчетный объем звукового файла. Кодирование и обработка звуковой информации

С меняющейся амплитудой и частотой. Чем выше амплитуда сигнала, тем он громче воспринимается человеком. Чем больше частота сигнала, тем выше его тон.

Рисунок 1. Амплитуда колебаний звуковых волн

Частота звуковой волны определяется количеством колебаний в одну секунду. Данная величина измеряется в герцах (Гц, Hz).

Ухо человека воспринимает звуки в диапазоне от $20$ Гц до $20$ кГц, данный диапазон называют звуковым . Количество бит, которое при этом отводится на один звуковой сигнал, называют глубиной кодирования звука . В современных звуковых картах обеспечивается $16-$, $32-$ или $64-$битная глубина кодирования звука. В процессе кодирования звуковой информации непрерывный сигнал заменяется дискретным , то есть преобразуется в последовательность электрических импульсов, состоящих из двоичных нулей и единиц.

Частота дискретизации звука

Одной из важных характеристик процесса кодирования звука является частота дискретизации, которая представляет собой количество измерений уровня сигнала за $1$ секунду:

  • одно измерение в одну секунду соответствует частоте $1$ гигагерц (ГГц);
  • $1000$ измерений в одну секунду соответствует частоте $1$ килогерц (кГц) .

Определение 2

Частота дискретизации звука - это количество измерений громкости звука за одну секунду.

Количество измерений может находиться в диапазоне от $8$ кГц до $48$ кГц, причем первая величина соответствует частоте радиотрансляции, а вторая - качеству звучания музыкальных носителей.

Замечание 1

Чем выше частота и глубина дискретизации звука, тем более качественно будет звучать оцифрованный звук. Самое низкое качество оцифрованного звука, которое соответствует качеству телефонной связи, получается, когда частота дискретизации равна 8000 раз в секунду, глубина дискретизации $8$ битов, что соответствует записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, которое соответствует качеству аудио -CD, достигается, когда частота дискретизации равна $48000$ раз в секунду, глубина дискретизации $16$ битов, что соответствует записи двух звуковых дорожек (режим «стерео»).

Информационный объем звукового файла

Следует отметить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла .

Оценим информационный объём моноаудиофайла ($V$), это можно сделать, используя формулу:

$V = N \cdot f \cdot k$,

где $N$ - общая длительность звучания, выражаемая в секундах,

$f$ - частота дискретизации (Гц),

$k$ - глубина кодирования (бит).

Пример 1

Например, если длительность звучания равна $1$ минуте и имеем среднее качество звука, при котором частота дискретизации $24$ кГц, а глубина кодирования $16$ бит, то:

$V=60 \cdot 24000 \cdot 16 \ бит=23040000 \ бит=2880000 \ байт = 2812,5 \ Кбайт=2,75 \ Мбайт.$

При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.

Пример 2

Например, оценим информационный объём цифрового стереозвукового файла, у котрого длительность звучания равна $1$ секунде при среднем качестве звука ($16$ битов, $24000$ измерений в секунду). Для этого глубину кодирования умножим на количество измерений в $1$ секунду и умножить на $2$ (стереозвук):

$V=16 \ бит \cdot 24000 \cdot 2 = 768000 \ бит = 96000 \ байт = 93,75 \ Кбайт.$

Основные методы кодирования звуковой информации

Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых выделяют два основных направления: метод FM и метод Wave-Table .

Метод FM (Frequency Modulation ) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых будет представлять собой правильную синусоиду, а это значит, что его можно описать кодом. Процесс разложения звуковых сигналов в гармонические ряды и их представление в виде дискретных цифровых сигналов происходит в специальных устройствах, которые называют «аналогово-цифровые преобразователи» (АЦП).

Рисунок 2. Преобразование звукового сигнала в дискретный сигнал

На рисунке 2а изображен звуковой сигнал на входе АЦП, а на рисунке 2б изображен уже преобразованный дискретный сигнал на выходе АЦП.

Для обратного преобразования при воспроизведении звука, который представлен в виде числового кода, используют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука изображен на рис. 3. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.

Рисунок 3. Преобразование дискретного сигнала в звуковой сигнал

На рисунке 3а представлен дискретный сигнал, который мы имеем на входе ЦАП, а на рисунке 3б представлен звуковой сигнал на выходе ЦАП.

Таблично-волновой метод (Wave-Table ) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Примеры форматов звуковых файлов

Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.

Формат MIDI (Musical Instrument Digital Interface) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.

Формат аудиофайла WAV (waveform) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV.

Формат МРЗ (MPEG-1 Audio Layer 3) - один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.

Решение задач на кодирование звуковой информации .

  1. Теоретическая часть

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Количество различных уровней громкости рассчитываем по формуле N= 2 I , где I – глубина звука.

Частота дискретизации – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц).

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Разрядность регистра - число бит в регистре аудио адаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2 I =N различных значений.

  1. Практическая часть. Разбор и решение задачи.

Задача 1 . Оцените информационный объём цифрового звукового стерео файла длительностью 20 секунд при глубине кодирования 16 бит и частоте дискретизации 10000 Гц? Результат представить в Кбайтах, округлить до сотых.

При решении таких задач надо не забывать следующее:

Что моно - 1 канал, стерео - 2 канала

Задача 2 . Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит.

Дано:

I = 8 бит=1 байт

t = 10 сек

η = 22,05 кГц = 22,05 * 1000 Гц = 22050 Гц

I - разрядность звуковой карты,

t - время звучания аудиофайла,

η - частота дискретизации

Решение:

V(Инфор.) = I · η ·t

V(Инфор.) = 22050 *10 *1 = 220500 байт

Ответ: V(Инфор.) = 220500 байт

Найти: V(информационный объём)-?

Решение задач на кодирование звуковой информации

I. Размер цифрового файла

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. (, стр. 156, пример 1)

Решение:

Формула для расчета размера (в байтах) цифрового аудио-файла: A=D*T*I/8.

Для перевода в байты полученную величину надо разделить на 8 бит.

22,05 кГц =22,05 * 1000 Гц =22050 Гц

A=D*T*I/8 = 22050 х 10 х 8 / 8 = 220500 байт.

^ Ответ: размер файла 220500 байт.

2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит. (, стр. 157, №88)

Решение:

A=D*T*I/8. – объем памяти для хранения цифрового аудиофайла.

44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = 10584000 байт= 10335,9375 Кбайт= 10,094 Мбайт.

Ответ: ≈ 10 Мб

6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации - 22050 Гц. Какова разрядность аудиоадаптера

Решение:

Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):

5, 1 Мбайт= 5347737,6 байт

5347737,6 байт: 120 сек: 22050 Гц= 2,02 байт =16 бит
^ Ответ: 16 бит

8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.

Решение:

а).
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
15,625 Кбайт/с х 60 с = 937,5 Кбайт

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт

^ Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт

9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

Решение:

Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = 15876000 байт = 15,1 Мб
Ответ: 15,1 Мб

10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?
Решение:

Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11, 025 КГц, разрядности аудиоадаптера - 8 бит (см. таблицу 1). Тогда T=A/D/I. Переведем объем в байты: 650 Кб = 665600 байт

Т=665600 байт/11025 Гц/1 байт ≈60.4 с

^ Ответ: длительность звучания равна 60,5 с

11. Оцените информационный объем высокачественного стереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц. (, стр. 74, пример 2.54)

Решение:

Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2 = 1 536 000 бит = 187,5 Кбайт (умножили на 2, так как стерео).

Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт

Ответ: 11 Мб

12. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:

700 Кбайт: 62,5 Кбайт/с = 11,2 с

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт: 62,5 Кбайт/с = 100,8 с = 1,68 мин

Ответ: а) 10 сек; б) 1,5 мин.

13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)?

Решение:

Формула для расчета объема памяти A=D*T*I :
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = 422707200 байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

^ II. Определение качества звука.

Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1

256 (2 8 ) уровней интенсивности сигнала - качество звучания радиотрансляции, использованием 65536 (2 16 ) уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.

13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.

Решение:
а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит: 10 сек = 770048 бит/с
3) 770048 бит/с: 16 бит = 48128 Гц –частота дискретизации – близка к самой высокой 44,1 КГц
^ Ответ: качество аудио-CD
б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит: 10 сек = 128614,4 бит/с
3) 128614,4 бит/с: 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции
Ответ: а) качество CD; б) качество радиотрансляции.

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле N = 2 I где I – глубина звука.

Частота дискретизации – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц). 1 измерение за 1 секунду -1 ГЦ.

1000 измерений за 1 секунду 1 кГц. Обозначим частоту дискретизации буквой D . Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц .

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.


Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.).

Разрядность регистра - число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I , то при измерении входного сигнала может быть получено 2 I = N различных значений.

Размер цифрового моноаудиофайла (A ) измеряется по формуле:

A = D * T * I /8 , где D частота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.

Размер цифрового стереоаудиофайла (A ) измеряется по формуле:

A =2* D * T * I /8 , сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.

Учащимся полезно выдать таблицу 1 , показывающую, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:

1. Размер цифрового файла

Уровень «3»

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. (, стр. 156, пример 1)

Решение:

Формула для расчета размера (в байтах) цифрового аудио-файла: A = D * T * I /8.

Для перевода в байты полученную величину надо разделить на 8 бит.

22,05 кГц =22,05 * 1000 Гц =22050 Гц

A = D * T * I /8 = 22050 х 10 х 8 / 8 = 220500 байт.

Ответ: размер файла 220500 байт.

2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит. (, стр. 157, №88)

Решение :

A = D * T * I /8. – объем памяти для хранения цифрового аудиофайла.

44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = 10584000 байт= 10335,9375 Кбайт= 10,094 Мбайт.

Ответ: ≈ 10 Мб

Уровень «4»

3. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? (, стр. 157, №89)

Решение:

Формула для расчета частоты дискретизации и разрядности: D* I =А/Т

(объем памяти в байтах) : (время звучания в секундах):

2, 6 Мбайт= 2726297,6 байт

D* I =А/Т= 2726297,6 байт: 60 = 45438,3 байт

D=45438,3 байт: I

Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации

Ответ:

Частота дискретизации

Разрядность аудиоадаптера

1 вариант

22,05 КГц

16 бит

2 вариант

44,1 КГц

8 бит

4. Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? (, стр. 157, №90)


Решение:

Формула для расчета длительности звучания: T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):

5,25 Мбайт = 5505024 байт

5505024 байт: 22050 Гц: 2 байта = 124,8 сек
Ответ: 124,8 секунды

5. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук? (, стр. 157, №91)

Решение:

Формула для расчета частоты дискретизации: D =А/Т/I

(объем памяти в байтах) : (время записи в секундах) : (разрядность звуковой платы в байтах)

1,3 Мбайт = 1363148,8 байт

1363148,8 байт: 60: 1 = 22719,1 Гц

Ответ: 22,05 кГц

6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации - 22050 Гц. Какова разрядность аудиоадаптера? (, стр. 157, №94)

Решение:

Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):

5, 1 Мбайт= 5347737,6 байт

5347737,6 байт: 120 сек: 22050 Гц= 2,02 байт =16 бит

Ответ: 16 бит

7. Объем свободной памяти на диске - 0,01 Гб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц? (, стр. 157, №95)

Решение:

Формула для расчета длительности звучания T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах)

0,01 Гб = 10737418,24 байт

10737418,24 байт: 44100: 2 = 121,74 сек =2,03 мин
Ответ: 20,3 минуты

8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.

(, стр. 76, №2.82)

Решение:

а).
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
15,625 Кбайт/с х 60 с = 937,5 Кбайт

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт

Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт

Уровень «5»

Используется таблица 1

9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? (, стр. 157, №92)

Решение:

Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = 15876000 байт = 15,1 Мб
Ответ: 15,1 Мб

10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? (, стр. 157, №93)

Решение:

Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11, 025 КГц, разрядности аудиоадаптера - 8 бит (см. таблицу 1). Тогда T=A/D/I. Переведем объем в байты: 650 Кб = 665600 байт

Т=665600 байт/11025 Гц/1 байт ≈60.4 с

Ответ: длительность звучания равна 60,5 с

Решение:

Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2 = 1 536 000 бит = 187,5 Кбайт (умножили на 2, так как стерео).

Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт

Ответ: 11 Мб

Ответ: а) 940 Кбайт; б) 2,8 Мбайт.

12. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт

(, стр. 76, №2.84)

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:

700 Кбайт: 62,5 Кбайт/с = 11,2 с

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт: 62,5 Кбайт/с = 100,8 с = 1,68 мин

Ответ: а) 10 сек; б) 1,5 мин.

13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)? (, стр. 34, упражнение №34)

Решение:

Формула для расчета объема памяти A = D * T * I :
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = 422707200 байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

2. Определение качества звука.

Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1

256 (28) уровней интенсивности сигнала - качество звучания радиотрансляции, использованием 65536 (216) уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.

Уровень «5»

13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.

(, стр. 76, №2.83)

Решение:

а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит: 10 сек = 770048 бит/с
3) 770048 бит/с: 16 бит = 48128 Гц –частота дискретизации – близка к самой высокой 44,1 КГц
Ответ: качество аудио-CD

б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит: 10 сек = 128614,4 бит/с
3) 128614,4 бит/с: 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции

Ответ: а) качество CD; б) качество радиотрансляции.

14. Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.

(, стр. 77, №2.85)

Решение:

а).

8 бит х 8 000 = 64 000 бит = 8000 байт = 7,8 Кбайт/с
3) Время звучания моноаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт: 7,8 Кбайт/с = 182,5 с ≈ 3 мин

б).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2= 1 536 000 бит = 192 000 байт = 187,5 Кбайт/с
3) Время звучания стереоаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт: 187,5 Кбайт/с = 7,6 с

Ответ: а) 3 минуты; б) 7,6 секунды.

3. Двоичное кодирование звука.

При решении задач пользуется следующим теоретическим материалом:

Для того, чтобы кодировать звук, аналоговый сигнал, изображенный на рисунке,

плоскость разбивается на вертикальные и горизонтальные линии. Вертикальное разбиение –это дискретизация аналогового сигнала (частота измерения сигнала), горизонтальное разбиение - квантование по уровню. Т. е. чем мельче сетка – тем качественнее приближен аналоговый звук с помощью цифр. Восьмибитное квантование применяется для оцифровки обычной речи (телефонного разговора) и радиопередач на коротких волнах. Шестнадцатибитное – для оцифровки музыки и УКВ (ультро-коротко-волновые) радиопередач.

Уровень «3»

15. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука? (, стр. 77, №2.86)

Решение:

Длина кода аналогового сигнала с использованием 256 уровней интенсивности сигнала равна 8 битам, с использованием 65536 уровней интенсивности сигнала равна 16 битам. Так как длина кода одного сигнала увеличилась вдвое, то информационные объемы оцифрованного звука различаются в 2 раза.

Ответ: в 2 раза.

Уровень «

16. Согласно теореме Найквиста-Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала.

· Какова должна быть частота дискретизации звука, воспринимаемого человеком?

· Что должно быть больше: частота дискретизации речи или частота дискретизации звучания симфонического оркестра?

Цель: познакомить учащихся с характеристиками аппаратных и программных средств работы со звуком. Виды деятельности: привлечение знаний из курса физики (или работа со справочниками). (, стр. ??, задача 2)

Решение:

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Таким образом, по теореме Найквиста-Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала. Максимальная звуковая частота которую слышит человек -20 КГц, значит, аппарату ра и программные средства должны обеспечивать частоту дискретизации не менее 40 кГц, а точнее 44,1 КГц. Компьютерная обработка звучания симфонического оркестра предполагает более высокую частоту дискретизации, чем обработка речи, поскольку диапазон частот в случае симфонического оркестра значительно больше.

Ответ: не меньше 40 кГц, частота дискретизации симфонического оркестра больше.

Уровень»5»

17. На рисунке изображено зафиксированное самописцем звучание 1 секунды речи. Закодируйте его в двоичном цифровом коде с частотой 10 Гц и длиной кода 3 бита. (, стр. ??, задача 1)

Решение:

Кодирование с частотой 10 Гц означает, что мы должны измерить высоту звука 10 раз за секунду. Выберем равноотстоящие моменты времени:

Длина кода в 3 бита означает 23 = 8 уровней квантования. То есть в качестве числового кода высоты звука в каждый выбранный момент времени мы можем задать одну из следующих комбинаций: 000, 001, 010, 011, 100, 101, 110, 111. Их всего 8, следовательно, высоту звука можно измерять на 8 «уровнях»:

«Округлять» значения высоты звука будем до ближайшего нижнего уровня:

Используя данный способ кодирования, мы получим следующий результат (пробелы поставлены для удобства восприятия): 100 100 000 011 111 010 011 100 010 110.

Примечание. Целесообразно обратить внимание учащихся на то, насколько неточно код передает изменение амплитуды. То есть частота дискретизации 10 Гц и уровень квантования 23 (3 бита) слишком малы. Обычно для звука (голоса) выбирают частоту дискретизации 8 кГц, т. е. 8000 раз в секунду, и уровень квантования 28 (код длиной 8 бит).

Ответ: 100 100 000 011 111 010 011 100 010 110.

18. Объясните, почему уровень квантования относится, наряду с частотой дискретизации, к основным характеристикам представления звука в компьютере. Цели: закрепить понимание учащимися понятий «точность представления данных», «погрешность измерения», «погрешность представления»; повторить с учащимися двоичное кодирование и длину кода. Вид деятельности: работа с определениями понятий. (, стр. ??, задача 3)

Решение:

В геометрии, физике, технике есть понятие «точность измерения», тесно связанное с понятием «погрешность измерения». Но есть еще и понятие «точность представления». Например, про рост человека можно сказать, что он: а) около. 2 м, б) чуть больше 1,7 м, в) равен 1 м 72 см, г) равен 1 м 71 см 8 мм. То есть для обозначения измеренного роста можно использовать 1, 2, 3 или 4 цифры.
Так же и для двоичного кодирования. Если для записи высоты звука в конкретный момент времени использовать только 2 бита, то, даже если измерения были точны, передать можно только 4 уровня: низкий (00), ниже среднего (01), выше среднего (10), высокий (11). Если использовать 1 байт, то можно передать 256 уровней. Чем выше уровень квантования , или, что то же самое, чем больше битов отводится для записи измеренного значения, тем точнее передается это значение.

Примечание. Следует отметить, что измерительный инструмент тоже должен поддерживать выбранный уровень квантования (длину, измеренную линейкой с дециметровыми делениями, нет смысла представлять с точностью до миллиметра).

Ответ: чем выше уровень квантования тем точнее передается звук.

Литература:

[ 1] Информатика. Задачник-практикум в 2 т. /Под ред. , : Том 1. – Лаборатория Базовых Знаний, 1999 г. – 304 с.: ил.

Практикум по информатике и информационным технологиям . Учебное пособие для общеобразовательных учреждений / , . – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

Информатика в школе: Приложение к журналу «Информатика и образование». №4 - 2003. - М.: Образование и Информатика, 2003. - 96 с.: ил.

И др. Информационная культура: одирование информации. Информационные модели. 9-10 класс: Учебник для общеобразовательных учебных заведений. - 2-е изд. - М.: Дрофа, 1996. - 208 с.: ил.

Сенокосов по информатике для школьников. - Екатеринбург: «У-Фактория», 2003. - 346. с54-56.

Временная дискретизация звука.

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.
Дискретизация - преобразование непрерывных сигналов в набор дискретных значений, каждому из которых присваивается определенный двоичный код.


Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".

Каждой "ступеньке" присваивается значение уровня громкости звука, его код (1, 2, 3 и так далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле:
N=2 16 =65356[уровней звука],
где I - глубина кодирования.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.

Количество измерений в секунду может лежать в диапазоне от 8000 до 96 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 96[кГц]. При частоте 8[кГц] качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 96[кГц] - качеству звучания аудио-CD. Следует также учитывать, что возможны как моно, так и стерео режимы.

Информационный объем звукового файла

Для определения объема звукового файла V зф необходимо умножить количество измерений K изм на глубину кодирования (число бит на уровень) V 1изм:

V зф = K изм * V 1изм

Где количество измерений K изм зависит от:

Задача 1


Домашнее задание

1 Определить объем звукового стерео файла, при частоте дискретизации (дд)[кГц], времени звучания (гг)[с] для (мм)-битного кодирования.

2 Определить время звучания в [с] звукового моно файла, имеющего объем, равный (гг) [КБ], при глубине кодирования (мм)[БИТ] и частоте дискретизации (дд)[кГц].
Где (дд) - дата вашего рождения, (мм) - месяц вашего рождения, (гг) - год вашего рождения.