Скачать презентацию по физике электрический ток. Презентация по физике "электрический ток в различных средах"

Скачать презентацию по физике электрический ток. Презентация по физике
Скачать презентацию по физике электрический ток. Презентация по физике "электрический ток в различных средах"

Электрический ток Проект ученика 8 класса МОУ «СШ №4» г. Кимры Устинова Ильи 201 4-2015 год

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила тока равна отношению электрического заряда q , прошедшего через поперечное сечение проводника, ко времен его прохождения t . I= I -сила тока(А) q- электрический заряд(Кл) t- время(с) g t

Единица измерения силы тока За единицу силы тока принимают силу тока, при которой отрезки параллельных проводников длиной 1м взаимодействуют с силой 2∙10 -7 Н (0,0000002Н). Эту единицу называют АМПЕР (А). -7

Ампер Андре Мари Родился 22 января 1775 в Полемье близ Лиона в аристократической семье. Получил домашнее образование.. Занимался исследованиям связи между электричеством и магнетизмом (этот круг явлений Ампер называл электродинамикой). Впоследствии разработал теорию магнетизма. Умер Ампер в Марселе 10 июня 1836.

Амперметр Амперметр- прибор для измерения силы тока. Амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют.

Измерение силы тока Электрическая цепь Схема электрической цепи

Напряжение это физическая величина которая показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую. A q U=

За единицу измерения принимают такое электрическое напряжение на концах проводника, при котором работа по перемещению электрического заряда в 1 Кл по этому проводнику равна 1 Дж. Эту единицу называют ВОЛЬТ (В)

Алессандро Волта итальянский физик, химик и физиолог, один из основоположников учения об электричестве. Алессандро Вольта родился в 1745,был четвёртым ребенком в семье. В 1801 году получил от Наполеона титул графа и сенатора. Умер Вольта в Комо 5 марта 1827.

Вольтметр Вольтметр- прибор для измерения электрического напряжения. Вольтметр включают в цепь параллельно тому участку цепи между концами которого измеряют напряжение.

Измерение напряжения Схема электрической цепи Электрическая цепь

Электрическое сопротивление Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника. R = ρ ℓ S R- сопротивление ρ -удельное сопротивление ℓ - длина проводника S- площадь поперечного сечения

Причиной сопротивления является взаимодействие движущихся электронов с ионами кристаллической решётки.

За единицу сопротивления принимают 1 Ом. сопротивление такого проводника, в котором при напряжении на концах 1 вольт сила тока ровна 1 амперу.

Ом Георг ОМ (Ohm) Георг Симон (16 марта 1787, Эрланген - 6 июля 1854, Мюнхен), немецкий физик, автор одного из основных законов, Ом занялся исследованиями электричества. В 1852 году Ом получил пост ординарного профессора. Ом скончался 6 июля 1854 года.. В 1881 году на электротехниче-ском съезде в Париже ученые единогласно утвердили наименование единицы сопротивления- 1 Ом.

Закон Ома Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. I = u R

Определение сопротивления проводника R=U:I Измерение силы тока и напряжения Схема электрической цепи

ПРИМЕНЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА

Презентация по физике на тему: «Электрический ток» Выполнил: Viktor_Sad Капустин Лицей №18; 10 IV класс Учитель И.А. Боярина 1. Первоначальные сведения о электрическом токе 2. Сила тока 3. Сопротивление 4. Напряжение 5. Закон Ома для участка цепи 6. Закон Ома для полной цепи 7. Подключение амперметра и вольтметра 8. Тесты


Электрический ток – это упорядоченное движение свободных электрических зарядов под действием электрического поля. Понять это нам поможет опыт... К началу...


Сила тока. Сила тока – физическая величина, показывающая заряд, проходящий через проводник за единицу времени. Математически это определение записывается в виде формулы: I –сила тока (А) q –заряд (Кл) t –время (с) Для измерения силы тока используют специальный прибор – амперметр. Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Единица измерения силы тока... К началу...


Сопротивление. 1. Основная электрическая характеристика проводника – сопротивление. 2. Сопротивление зависит от материала проводника и его геометрических размеров: R = ? * (? / S), где? - удельное сопротивление проводника (величина, зависящая от рода вещества и его состояния). Единицей удельного сопротивления является 1 Ом * м. Это если кратко. Теперь подробней... К началу...


Напряжение. Напряжение - разность потенциалов между 2 точками электрической цепи; на участке цепи, не содержащей электродвижущую силу, равно произведению силы тока на сопротивление участка. U = I * R К началу... Это если кратко. Теперь подробней...


Закон Ома для участка цепи: Сила тока на участке цепи прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению. I=U/R К началу... А доказать?!


Закон Ома для полной цепи: Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению. I = ? / (R + r), где? – ЭДС, а (R + r) – полное сопротивление цепи (сумма сопротивлений внешнего и внутреннего участков цепи). К началу... Поподробнее...


Подключение амперметра и вольтметра: Амперметр включают последовательно с проводником, в котором измеряют силу тока. Вольтметр включают параллельно проводнику, на котором измеряют напряжение. R R К началу...


Опыт, поясняющий определение электрического тока: Два электрометра с большими шарами располагают на некотором расстоянии друг от друга. Один из них электризуют заряженной палочкой, что можно увидеть по отклонению стрелки. Затем за изолирующую ручку берут проводник, в середину оторого впаяна неоновая лампочка. Соединяют наэлектризованный шар с ненаэлектризованным. Лампочка на мгновение вспыхивает. По отклонениям стрелок на электрометрах приходят к выводу: левый шар теряет часть своего заряда, а правый такой же заряд приобретает. Разъяснить... К началу...


Подумаем над тем, что происходит в данном опыте: Так как заряд одного шара уменьшился, а заряд другого увеличился, то это означает, что по проводнику, которым соединяли шары, прошли электрические заряды, что сопровождалось свечением лампочки. В этом случае говорят, что по проводнику протекает электрический ток. Что же заставляет заряды двигаться вдоль проводника? Ответ может быть только один - электрическое поле. Любой источник тока имеет два полюса, один полюс заряжен положительно, другой - отрицательно. При работе источника тока между его полюсами создается электрическое поле. Когда к этим полюсам присоединяют проводник, то в нём также возникает электрическое поле, созданное источником тока. Под действием этого электрического поля свободные заряды внутри проводника начинают двигаться по проводнику с одного полюса на другой. Возникает упорядоченное движение электрических зарядов. Это и есть электрический ток. Если проводник отключить от источника тока, то электрический ток прекращается. К началу...


Единица силы тока – 1 ампер (1 А = 1 Кл/с). Единица силы тока – 1 ампер (1 А = 1 Кл/с). Для установления этой единицы используют магнитное действие тока. Оказывается, что проводники, по которым текут параллельные одинаково направленные токи, притягиваются друг к другу. Это притяжение тем сильнее, чем больше длина этих проводников и меньше расстояние между ними. За 1 ампер принимают силу такого тока, который вызывает между двумя тонкими бесконечно длинными параллельными проводниками, расположенными в вакууме на расстоянии 1 м друг от друга, притяжение силой 0,0000002 Н на каждый метр их длины. А справа вы видите амперметр: К началу...


Соберем цепь из лампочки и источника тока. При замыкании цепи, лампочка, конечно же, загорится. Включим теперь в цепь отрезок стальной проволоки. Лампочка станет гореть тусклее. Заменим теперь стальную проволоку на никелиновую. Накал спирали лампочки еще уменьшится. Другими словами, мы наблюдали ослабление теплового действия тока или уменьшение мощности тока. Из опыта следует вывод: дополнительный проводник, последовательно включенный в цепь, уменьшает в ней силу тока. Другими словами, проводник оказывает току сопротивление. Различные проводники (отрезки проволоки) оказывают току различное сопротивление. Итак, сопротивление проводника зависит от рода вещества, из которого этот проводник изготовлен. К началу... Есть ли другие причины, влияющие на сопротивление проводника?


Рассмотрим опыт, изображенный на рисунке. Буквами A и B обозначены концы тонкой никелиновой проволоки, а буквой K – подвижный контакт. Передвигая его вдоль проволоки, мы изменяем длину того ее участка, который включен в цепь (участок AK). Сдвигая контакт K влево, мы увидим, что лампочка станет гореть ярче. Передвижение контакта вправо заставит лампочку гореть тусклее. Из этого опыта следует вывод, что изменение длины проводника, включенного в цепь, приводит к изменению его сопротивления. К началу... А какие есть приборы для изменения длины проводника?


Существуют специальные приборы – реостаты. Принцип их действия такой же, как и в рассмотренном нами опыте с проволокой. Отличие лишь в том, что для уменьшения размеров реостата проволоку наматывают на фарфоровый цилиндр, закрепленный в корпусе, а подвижный контакт (говорят: "движок" или "ползунок") насаживают на металлический стержень, одновременно служащий проводником. Итак, реостат – электрический прибор, сопротивление которого можно изменять. Реостаты служат для регулирования тока в цепи. А третьей причиной, влияющей на сопротивление проводника, является площадь его поперечного сечения. При ее увеличении сопротивление проводника уменьшается. Сопротивление проводников также изменяется при изменении их температуры. К началу...


Через обе лампочки проходит одинаковый ток: 0.4 А. Но большая лампа горит ярче, то есть работает с большей мощностью, чем маленькая. Получается, мощность может быть различной при одинаковой силе тока? В нашем случае напряжение, создаваемое выпрямителем, меньше напряжения, создаваемого городской электросетью. Поэтому при равенстве сил тока мощность тока в цепи с меньшим напряжением оказывается меньше. По международному соглашению единицей электрического напряжения служит 1 вольт. Это такое напряжение, которое при силе тока 1 А создает ток мощностью 1 Вт. К началу... Воль – это понятно. Все мы знает 220 V, которое трогать не стоит. Но как измерить эти 220?


Для измерения напряжения используют специальный прибор – вольтметр. Его всегда присоединяют параллельно к концам того участка цепи, на котором хотят измерить напряжение. Внешний вид школьного демонстрационного вольтметра показан на рисунке справа. К началу...


Установим, какова зависимость силы тока от напряжения, на опыте: На рисунке изображена электрическая цепь, состоящая из источника тока - аккумулятора, амперметра, спирали из никелиновой проволоки, ключа и параллельно присоединенного к спирали вольтметра. Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько, же раз увеличивается сила тока. Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника. Ну, а дальше... Можно и к началу...


Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту. На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различными сопротивлениями. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже в таблице приведены результаты опытов с тремя различными проводниками: Продолжить опыт... К началу...


В первом опыте сопротивление проводника 1 Ом и сила тока в цепи 2 А. Сопротивление второго проводника 2 Ом, т.е. в два раза больше, а сила тока в два раза меньше. И наконец, в третьем случае сопротивление цепи увеличилось в четыре раза и во столько же раз уменьшилась сила тока. Напомним, что напряжение на концах проводников во всех трех опытах было одинаковое, равное 2 В. Обобщая результаты опытов, приходим к выводу: сила тока в проводнике обратно пропорциональна сопротивлению проводника. Выразим два наших опыта в графиках: К началу...


Внутренний участок цепи, как и внешний, оказывает проходящему через него току некоторое сопротивление. Его называют внутренним сопротивлением источника.Например, внутреннее сопротивление генератора обусловлено сопротивлением обмоток, а внутреннее сопротивление гальванических элементов – сопротивлением электролита и электродов. Рассмотрим простейшую электрическую цепь, состоящую из источника тока, и сопротивления во внешней цепи. Внутренний участок цепи, находящийся внутри источника тока, так же как и внешний, обладает электрическим сопротивлением. Будем обозначать сопротивление внешнего участка цепи через R, а сопротивление внутреннего участка через r. К началу... Продолжаем...


А как Ом вывел свой закон для полной цепи: ЭДС в замкнутой цепи равна сумме падений напряжения на внешнем и на внутреннем участках.Напишем, согласно закону Ома, выражения для напряжений на внешнем и внутреннем участках цепи.Сложив полученные выражения, и выразив из полученного равенства силу тока, получим формулу, отражающую закон Ома для полной цепи. К началу...


Тесты: 1. На рисунке показана шкала амперметра, включенного в электрическую цепь. Какова сила тока в цепи? А. 12 ± 1 А Б. 18 ± 2 А В. 14 ± 2 А 2. Протон влетает в пространство между двумя заряженными брусками. По какой траектории он будет двигаться? А. 1 Б. 2 В. 3 Г. 4 3. Девочка измеряла силу тока в приборе при разных значениях напряжения на его клеммах. Результаты измерений представлены на рисунке. Каким, скорее всего, было значение силы тока в приборе при напряжении 0 В? А. 0 мА Б. 5 мА Г. 10 мА К началу...


Ответ не правильный... Плохие тесты... Хочу к началу... Это, конечно, печально, но может попробуем еще?!


Браво!!! Это верно!!! Слишком легко для меня... Так что к началу... Мне нравится такая игра! Повторим!!!

    Слайд 1

    План лекции 1. Понятие о токе проводимости. Вектор тока и сила тока. 2. Дифференциальная форма закона Ома. 3. Последовательное и параллельное соединение проводников. 4. Причина появления электрического поля в проводнике, физический смысл понятия сторонних сил. 5. Вывод закона Ома для всей цепи. 6. Первое и второе правила Кирхгофа. 7. Контактная разность потенциалов. Термоэлектрические явления. 8. Электрический ток в различных средах. 9. Ток в жидкостях. Электролиз. Законы Фарадея.

    Слайд 2

    Электрическим током называется упорядоченное движение электрических зарядов. Носителями тока могут быть электроны, ионы, заряженные частицы. Если в проводнике создать электрическое поле, то в нем свободные электрические заряды придут в движение – возникает ток, называемый током проводимости. Если в пространстве перемещается заряженное тело, то ток называется конвекционным. 1. Понятие о токе проводимости. Вектор тока и сила тока

    Слайд 3

    За направление тока принято принимать направление движения положительных зарядов. Для возникновения и существования тока необходимо: 1.наличие свободных заряженных частиц; 2.наличие электрического поля в проводнике. Основной характеристикой тока является сила тока, которая равна величине заряда, прошедшего за 1 секунду через поперечное сечение проводника. Где q – величина заряда; t – время прохождения заряда; Сила тока величина скалярная.

    Слайд 4

    Электрический ток по поверхности проводника может быть распределен неравномерно, поэтому в некоторых случаях пользуются понятием плотность токаj. Средняя плотность тока равна отношению силы тока к площади поперечного сечения проводника. Где j – изменение тока; S – изменение площади.

    Слайд 5

    Плотность тока

    Слайд 6

    В 1826 г. немецкий физик Ом опытным путем установил, что сила тока J в проводнике прямо пропорциональна напряжению U между его концами Где k – коэффициент пропорциональности, называемый электропроводностью или проводимостью; [k] = [См] (сименс). Величина называется электрическим сопротивлением проводника. закон Ома для участка электрической цепи, не содержащей источника тока 2. Дифференциальная форма закона Ома

    Слайд 7

    Выражаем из этой формулы R Электрическое сопротивление зависит от формы, размеров и вещества проводника. Сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площади поперечного сеченияS Где – характеризует материал, из которого изготовлен проводник и называется удельным сопротивлением проводника.

    Слайд 8

    Выразим : Сопротивление проводника зависит от температуры. С увеличением температуры сопротивление увеличивается ГдеR0 – сопротивление проводника при 0С; t – температура; – температурный коэффициент сопротивления (для металла  0,04 град-1). Формула справедлива и для удельного сопротивления Где0 – удельное сопротивление проводника при 0С.

    Слайд 9

    При низких температурах (

    Слайд 10

    Перегруппируем члены выражения Где I/S=j– плотность тока; 1/= – удельная проводимость вещества проводника; U/l=Е – напряженность электрического поля в проводнике. закон Ома в дифференциальной форме.

    Слайд 11

    Закон Ома для однородного участка цепи. Дифференциальная форма закона Ома.

    Слайд 12

    3. Последовательное и параллельное соединение проводников

    Последовательное соединение проводников I=const(по законусохранения заряда); U=U1+U2 Rобщ=R1+R2+R3 Rобщ=Ri R=N*R1 (Для N одинаковых проводников) R1 R2 R3

    Слайд 13

    Параллельное соединение проводников U=const I=I1+I2+I3 U1=U2=U R1 R2 R3 Для N одинаковых проводников

    Слайд 14

    4. Причина появления электрического тока в проводнике. Физический смысл понятия сторонних сил Для поддержания постоянного тока в цепи, необходимо разделять положительные и отрицательные заряды в источнике тока, для этого на свободные заряды должны действовать силы неэлектрического происхождения, называемые сторонними силами. За счет создаваемого сторонними силами поля электрические заряды движутся внутри источника тока против сил электростатического поля.

    Слайд 15

    Благодаря этому на концах внешней цепи поддерживается разность потенциалов и в цепи идет постоянный электрический ток. Сторонние силы вызывают разделение разноименных зарядов и поддерживают разность потенциалов на концах проводника. Добавочное электрическое поле сторонних сил в проводнике создается источниками тока (гальваническими элементами, аккумуляторами, электрическими генераторами).

    Слайд 16

    ЭДС источника тока Физическая величина равная работа сторонних сил по перемещению единичного положительного заряда между полюсами источника называется электродвижущей силой источника тока (ЭДС).

    Слайд 17

    ЗаконОма для неоднородного участка цепи

    Слайд 18

    5. Вывод закона Ома для замкнутой электрической цепи

    Пусть замкнутая электрическая цепь состоит из источника тока с , с внутренним сопротивлением r и внешней части, имеющей сопротивление R. R – внешнее сопротивление; r – внутреннее сопротивление. где – напряжение на внешнем сопротивлении; А – работа по перемещению заряда q внутри источника тока, т. е. работа на внутреннем сопротивлении.

    Слайд 19

    Тогда так как, то перепишем выражение для : , Так как согласно закона Ома для замкнутой электрической цепи (=IR) IR и Ir – падение напряжения на внешнем и внутреннем участках цепи,

    Слайд 20

    То -закон Ома для замкнутой электрической цепи В замкнутой электрической цепи электродвижущая сила источника тока равна сумме падений напряжения на всех участках цепи.

    Слайд 21

    6. Первое и второе правила Кирхгофа Первое правило Кирхгофа является условием постоянства тока в цепи. Алгебраическая сумма сил тока в узле разветвления равна нулю где n – число проводников; Ii – токи в проводниках. Токи, подходящие к узлу, считаются положительными, выходящие из узла – отрицательными. Для узла А первое правило Кирхгофа запишется:

    Слайд 22

    Первое правило Кирхгофа Узлом электрической цепи называется точка в которой сходится не менее трех проводников. Сумма токов сходящихся в узле равна нулю – первое правило Кирхгофа. Первое правило Кирхгофа является следствием закона сохранения заряда – в узле электрический заряд накапливаться не может.

    Слайд 23

    Второе правило Кирхгофа Второе правило Кирхгофа является следствием закона сохранения энергии. В любом замкнутом контуре разветвленной электрической цепи алгебраическая сумма Ii на сопротивления Ri соответствующих участков этого контура равна сумме приложенных в нем ЭДС i

    Слайд 24

    Второе правило Кирхгофа

    Слайд 25

    Для составления уравнения необходимо выбрать направление обхода (по часовой стрелке или против нее). Все токи, совпадающие по направлению с обходом контура, считаются положительными. ЭДС источников тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Так, например, правило Кирхгофа для I, II, III к. I I1r1 + I1R1 + I2r2 + I2R2 = – 1 –2 II–I2r2 – I2R2 + I3r3 + I3R3= 2 + 3 IIII1r1 + I1R1 + I3r3 + I3R3 = – 1 + 3 На основании этих уравнений производится расчет цепей.

    Слайд 26

    7. Контактная разность потенциалов. Термоэлектрические явления Электроны, обладающие наибольшей кинетической энергией, могут вылететь из металла в окружающее пространство. В результате вылета электронов образуется “электронное облако”. Между электронным газом в металле и “электронным облаком” существует динамическое равновесие. Работа выхода электрона – это работа, которую нужно совершить для удаления электрона из металла в безвоздушное пространство. Поверхность металла представляет собой двойной электрический слой, подобный очень тонкому конденсатору.

    Слайд 27

    Разность потенциалов между обкладками конденсатора зависит от работы выхода электрона. Гдее – заряд электрона;  – контактная разность потенциалов между металлом иокружающей средой; А – работа выхода (электрон-вольт – Э-В). Работа выхода зависит от химической природы металла и состояния его поверхности(загрязнение, влага).

    Слайд 28

    Законы Вольта: 1. При соединении двух проводников, изготовленных из различных металлов, между ними возникает контактная разность потенциалов, которая зависит только от химического состава и температуры. 2. Разность потенциалов между концами цепи, состоящей из последовательно соединенных металлических проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников. Она равна контактной разности потенциалов, возникающих при непосредственном соединении крайних проводников.

    Слайд 29

    Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2. ЭДС, приложенная к этой цепи равна алгебраической сумме всех скачков потенциала. Если температуры слоев равны, то =0. Если температуры слоев различны, например, тогда Где  – постоянная, характеризующая свойства контакта двух металлов. В этом случае в замкнутой цепи появляется термоэлектродвижущая сила, прямо пропорциональная разности температур обоих слоев.

    Слайд 30

    Термоэлектрические явления в металлах широко используются для измерения температуры. Для этого используются термоэлементы или термопары, представляющие собой две проволоки, изготовленные из различных металлов и сплавов. Концы этих проволок спаяны. Один спай помещается в среду, температуру Т1 которой нужно измерить, а второй – в среду с постоянной известной температурой. Термопары имеют ряд преимуществ перед обычными термометрами: позволяют измерять температуры в широком диапазоне от десятков до тысяч градусов абсолютной шкалы.

    Слайд 31

    Газы в нормальных условиях являются диэлектрикамиR=>∞, состоят их электрически нейтральных атомов и молекул. При ионизации газов возникают носители электрического тока (положительные заряды). Электрический ток в газах называется газовым разрядом. Для осуществления газового разряда к трубке с ионизированным газом должно быть электрическое или магнитное поле.

    Слайд 32

    Ионизация газа - это распад нейтрального атома на положительный ион и электрон под действием ионизатора (внешних воздействий – сильного нагревания, ультрафиолетовых и рентгеновских лучей, радиоактивных излучений, при бомбардировке атомов (молекул) газов быстрыми электронами или ионами). Ион электрон атом нейтральный

    Слайд 33

    Мерой процесса ионизации является интенсивность ионизации, измеряемая числом пар противоположно заряженных частиц, возникающих в единичном объеме газа за единичный промежуток времени. Ударной ионизацией называется отрыв от атома (молекулы) одного или нескольких электронов, вызванный соударением с атомами или молекулами газа электронов или ионов, разогнанных электрическим полем в разряде.

    Слайд 34

    Рекомбинация - это соединение электрона с ионом в нейтральный атом. Если действия ионизатора прекращается, газ снова становится диалектиком. электрон ион

    Слайд 35

    1.Несамостоятельный газовый разряд – это разряд, существующий только под действием внешних ионизаторов. Вольтамперная характеристика газового разряда:по мере увеличения U растет число заряженных частиц, достигающих электрода и возрастает ток до I=Iк, при котором все заряженные частицы достигают электродов. При этом U=Uк ток насыщения Где е – элементарный заряд; N0 – максимальное число пар одновалентных ионов, образующихся в объеме газа за 1 с.

    Слайд 36

    2.Самостоятельный газовый разряд – разряд в газе, который сохраняется после прекращения действия внешнего ионизатора. Поддерживается и развивается за счет ударной ионизации. Несамостоятельный газовый разряд переходит в самостоятельный при Uз – напряжении зажигания. Процесс такого перехода называется электрическим пробоем газа. Различают:

    Слайд 37

    Коронный разряд– возникает при высоком давлении и в резко неоднородном поле с большой кривизной поверхности, применяется при обеззараживании семян сельскохозяйственных культур. Тлеющий разряд– возникает при низких давлениях, используется в газосветных трубках, газовых лазерах. Искровойразряд – при Р=Ратм ипри больших электрического поля - молния (токи до нескольких тысяч Ампер, длина – несколько километров). Дуговой разряд – возникает между близко сдвинутыми электродами,(Т=3000 °С – при атмосферном давлении. Используется как источник света в мощных прожекторах, в проекционной аппаратуре.

    Слайд 38

    Плазма – особое агрегатное состояние вещества, характеризующееся высокой степенью ионизации его частиц. Плазма подразделяется на: – слабо ионизированную ( – доли процента – верхние слои атмосферы, ионосфера); – частично ионизированную (несколько %); – полностью ионизированную (солнце, горячие звезды, некоторые межзвездные облака). Искусственно созданная плазма используется в газоразрядных лампах, плазменных источниках электрической энергии, магнитодинамических генераторах.

    Слайд 39

    Эмиссионные явления: 1. Фотоэлектронная эмиссия – вырывание под действием света электронов с поверхности металлов в вакууме. 2. Термоэлектронная эмиссия – испускание электронов твердыми или жидкими телами при их нагревании. 3. Вторичная электронная эмиссия – встречный поток электронов с поверхности, бомбардируемой электронами в вакууме. Приборы, основанные на явлении термоэлектронной эмиссии, называются электронными лампами.

    Слайд 40

    В твердых телах электрон взаимодействует не только со своим атомом, но и с другими атомами кристаллической решетки, происходит расщепление энергетических уровней атомов с образованием энергетической полосы. Энергия этих электронов может находиться в пределах заштрихованных областей, называемых разрешенными энергетическими зонами. Дискретные уровни разделены областями недозволенных значений энергии – запрещенными зонами (ширина их соизмерима с шириной запретных зон). Различия в электрических свойствах различных типов твердых тел объясняется: 1) шириной запрещенных энергетических зон; 2) различным заполнением электронами разрешенных энергетических зон

    Слайд 41

    Многие жидкости очень плохо проводят электрический ток (дистиллированная вода, глицерин, керосин и т.д.). Водные растворы солей, кислот и щелочей хорошо проводят электрический ток. Электролиз – прохождение тока через жидкость, вызывающее выделение на электродах веществ, входящих в состав электролита. Электролиты – вещества, обладающие ионной проводимостью. Ионная проводимость – упорядоченное движение ионов под действием электрического поля. Ионы – атомы или молекулы, потерявшие или присоединившие к себе один или несколько электронов. Положительные ионы – катионы, отрицательные – анионы.

    Слайд 42

    Электрическое поле создается в жидкости электродами (“+” – анод, “–” – катод). Положительные ионы (катионы) движутся к катоду, отрицательные – к аноду. Возникновение ионов в электролитах объясняется электрической диссоциацией – распадом молекул растворимого вещества на положительные и отрицательные ионы в результате взаимодействия с растворителем (Na+Cl-; H+Cl-; K+I-…). Степенью диссоциацииαназывается число молекул n0, диссоциировавших на ионы, к общему числу молекул n0 При тепловом движении ионов происходит и обратный процесс воссоединения ионов, называемый рекомбинацией.

    Слайд 43

    Законы М. Фарадея (1834 г.). 1.Масса вещества, выделяющегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит или Где k – электрохомический эквивалент вещества; равен массе вещества, выделившегося при прохождении через электролит единицы количества электричества. Где I – постоянный ток, проходящий через электролит.

    Слайд 46

    СПАСИБО ЗА ВНИМАНИЕ

Посмотреть все слайды

Слайд 2

Электрическим током называется упорядоченное движение заряженных частиц.Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Под действием этого поля заряженные частицы, которые могут свободно перемещаться в этом проводнике,придут в движение в направлении действия на них электрических сил. Возникает электрический ток.Чтобы электрический ток в проводнике существовал длительное время,необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока.

Слайд 3

Полюса источника тока

Источники тока бывают различные, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделенные частицы накапливаются на полюсах источника тока. Так называют места,к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, а другой –отрицательно.

Слайд 4

Источники тока

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение механической работы в электрическую. Так например в электрофорной машине(см. рис.) в электрическую энергию превращается механическая энергия

Слайд 5

Электрическая цепь и ее составные части

Для того чтобы использовать энергию электрического тока, нужно прежде всего иметьисточник тока. Электродвигатели, лампы, плитки, всевозможные электробытовые приборы называютприемниками илипотребителями электрической энергии.

Слайд 6

Условные обозначения, применяемые на схемах

Электрическую энергию нужно доставить к приемнику. Для этого приемник соединяют с источником электрической энергии проводами. Чтобы включать и выключать в нужное время приемники, применяют ключи, рубильники, кнопки, выключатели. Источник тока, приемники, замыкающие устройства,соединенные между собой проводами, составляют простейшую электрическую цепь Чтобы в цепи был ток,она должна быть замкнутой.Если в каком – нибудь месте провод оборвется,то ток в цепи прекратится.

Слайд 7

Схемы

Чертежи, на которых изображены способы соединения электрических приборов в цепь, называют схемами. На рисунке а) изображен пример электрической цепи.

Слайд 8

Электрический ток в металлах

Электрический ток в металлах представляет собой упорядоченное движение свободных электронов. Доказательством того, что ток в металлах обусловлен электронами,явились опыты физиков из нашей страны Л.И. Мендельштама и Н.Д. Папалекси(см.рис.), а так же американских физиков Б. Стюарта и РобертаТолмена.

Слайд 9

Узлы кристаллической решетки металла

В узлах кристаллической решетки металла расположены положительные ионы, а в пространстве межлу ними движутся свободные электроны, т. е. Не связанные с ядрами своих атомов (см. рис.). Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решетки. Поэтому в обычных условиях металл электрически нейтрален.

Слайд 10

Движение электронов

Когда в металле создается электрическое поле, оно действует на электроны с некоторой силой и сообщает ускорение в направлении, противоположном направлению вектора напряженности поля. Поэтому в электрическом поле беспорядочно движущиеся электроны смещаются в одном направлении, т.е. движутся упорядоченно.

Слайд 11

Движение электронов частично напоминает дрейф льдин во время ледохода…

Когда они,двигаясь беспорядочно и сталкиваясь друг с другом, дрейфуют по течению реки. Упорядоченное перемещение электронов проводимости и представляет собой электрический ток в металлах.

Слайд 12

Действие электрического тока.

О наличии электрического тока в цепи мы можем судить лишь по различным явлениям, которые вызывает электрический ток. Такие явления называют действиямитока. Некоторые из этих действий легко наблюдать на опыте.

Слайд 13

Тепловое действие тока…

…можно наблюдать, например, присоеденив к полюсам источника тока железную или никелиновую проволоку. Проволока при этом нагревается и, удлинившись, слегка провисает. Ее даже можно раскалить докрасна. В электрических лампах, например, тонкая вольфрамовая проволочка нагревается током да яркого свечения

Слайд 14

Химическое действие тока…

… состоит в том, что в некоторых растворах кислот при прохождении через них электрического тока наблюдается выделение веществ. Вещества,содержащиеся в растворе,откладываются на электродах, опущенных в этот раствор. Например,при пропускании тока через раствор медного купороса на отрицательно заряженном электроде выделится чистая медь. Это используют для получения чистых металлов.

Слайд 15

Магнитное действие тока …

… также можно наблюдать на опыте. Для этого медный провод, покрытый изоляционными материалом, нужно намотать на железный гвоздь, а концы провода соединить с источником тока. Когда цепь замкнута,гвоздь становится магнитом и притягивает небольшие железные предметы: гвозди, железные стружки, опилки. С исчезновением тока в обмотке гвоздь размагничивается.

Слайд 16

Рассмотрим теперь взаимодействие между проводником с током и магнитом.

На рисунке изображена висящая на нитях небольшая рамочка, на которую навито несколько витков тонкой медной проволоки. Концы обмотки присоединены к полюсам источника тока. Следовательно, в обмотке существует электрический ток, но рамка висит неподвижно. Если рамку поместить теперь между полюсами магнита, то она станет поворачиваться.

Слайд 17

Направление электрического тока.

Так как в большинстве случаев мы имеем дело с электрическим током в металлах, то за направление тока в цепи разумно было бы принять направление движения электронов в электрическом поле, т.е. считать, что ток направлен от отрицательного полюса источника к положительному. За направление тока условно приняли то направление, по которому движутся в проводнике положительные заряды, т.е. направление от положительного полюса источника тока к отрицательному. Это учтено во всех правилах и законах электрического тока.

Слайд 18

Сила тока.Единицы силы тока.

Электрический заряд,проходящий через поперечное сечение проводника в 1с, определяет силу тока в цепи. Значит, сила тока равна отношению электрического зарядаq, прошедшего через поперечное сечение проводника, ко времени его прохожденияt. Где I–сила тока.

Слайд 19

Опыт по взаимодействию двух проводников с током.

На Международной конференции по мерам и весам в 1948 году было решено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током. Ознакомимся сначала с этим явлением на опыте…

Слайд 20

Опыт

На рисунке изображены два гибких прямых проводника, расположенных параллельно друг другу. Оба проводника подсоединены к источнику тока. При замыкании цепи по проводникам протекает ток, вследствие чего они взаимодействуют –притягиваются или отталкиваются,в зависимости от направления токов в них. Силу взаимодействия проводников с током можно измерить, она зависит от длины проводника, расстояния между ними, среды, в которой находятся проводники, от силы тока в проводниках.

Слайд 21

Единицы силы тока.

За единицу силы тока принимают силу тока, при которой отрезки таких параллельных проводников длиной 1м взаимодействуют с силой 0,0000002 Н. Эту единицу силы тока называют ампером(А) .Так как она названа в честь французского ученого Андре Ампера.

При измерении силы тока амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют. В цепи,состоящей из источника тока и ряда проводников,соединенных так, что конец одного проводника соединяется с началом другого,сила тока во всех участках одинакова.

Слайд 25

Сила тока- очень важная характеристика электрической цепи. Работающим с электрическими цепями надо знать, что для человеческого организма безопасной считается сила тока до1 Ма. Сила тока бльше100 Ма приводит к серьезным поражениям организма.

Посмотреть все слайды













1 из 12

Презентация на тему: Электрический ток в проводниках

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

УРОК № 1 ТЕМА: ЭЛЕКТРИЧЕСКИЙ ТОК. ЦЕЛИ: 1. Повторение, углубление и усвоение новых знаний по теме «Электрический ток». 2. Развитие аналитического и синтезирующего мышления. 3. Воспитание мотивов учения, положительного отношения к знаниям. ТИП УРОКА: Урок изучения нового материала. ВИД УРОКА: Диалог-общение. ОБОРУДОВАНИЕ: лабораторный набор для измерения силы тока в цепи

№ слайда 3

Описание слайда:

Х О Д У Р О К А. I Организационный момент: 1. Сообщение темы и целей урока. 2. Опорные понятия: Виды взаимодействия. Электромагнитное взаимодействие. Электрические заряды. Электрическое поле его свойства и характеристики. Работа электрического поля. Энергия электрического поля. Электрический ток. Движение зарядов в проводнике. Направление электрического тока. Сила тока. Сила тока с точки зрения МКТ. Постоянный электрический ток.

№ слайда 4

Описание слайда:

II Опрос (фронтальный): Виды взаимодействия. Электромагнитное взаимодействие. Электрические заряды. Взаимодействие электрич. зарядов. Устойчивые и неустойчивые системы электрических зарядов. Электрическое поле. Свойства электрического поля. Характеристики электрического поля. Работа электрического поля. Энергия электрического поля. Электрический ток.

№ слайда 5

Описание слайда:

№ слайда 6

Описание слайда:

3. Каковы основные особенности, свойства, структура поля движущихся зарядов? Движущийся электрический заряд является источником электромагнитного поля; поле вихревое; силовые линии замкнуты. Структура электромагнитного поля диполя, совершающего гармонические колебания.

№ слайда 7

Описание слайда:

3. Что показывает сила тока? 4. Сила тока как физическая величина. 5. Как выбирают направление электрического тока? 6. В чём измеряется сила тока? 7. Что называется постоянным электрическим током? 8. Каким прибором измеряется сила тока? Что вы знаете об этом приборе? 9. Соберите цепь и измерьте силу тока в цепи. А Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δq, переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δt, к этому интервалу времени. За направление электрического тока принято направление движения положительных свободных зарядов. Сила тока измеряется в амперах – «А». Ампер – это основная единица измерения. А =Кл/с Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

№ слайда 8

Описание слайда:

12. Где применяется постоянный электрический ток? 10. Мы уже сравнивали интенсивность движения заряженных частиц в проводнике с интенсивностью движения автомобилей через пропускной пункт на автодороге. Что характеризует интенсивность направленного движения заряженных частиц в проводнике? Δq = qN; N=nV = nSΔl; I = qnSvΔt/Δt. I = qnSv Интенсивность характеризует величину электрического заряда, проходящего через поперечное сечение проводника з а 1 с, или силу тока. 11. Как вычислить силу тока с точки зрения МКТ? Сила тока с точки зрения МКТ: I=Δq/Δt;№ слайда 10

Описание слайда:

VI Тест на обученность. Движение электронов в металлическом проводнике, помещённом в электрическое поле А – хаотическое тепловое, Б – упорядоченное по направлению напряжённости электрического поля, В – является результатом наложения упорядоченного движения электронов, на хаотическое тепловое, Г – совпадает с направлением электрического тока в проводнике. 2. В каких единицах измеряется сила тока? А – Кл, Б – Кл/с, В – Кл с, Г – А. 3. От чего зависит сила тока в проводнике? А – от величины заряда, его скорости, концентрации и площади поперечного сечения проводника, Б – от величины заряда, его скорости, концентрации и длины проводника, В – от величины заряда, прошедшего через поперечное сечение проводника и времени его прохождения, Г – от напряжения на концах проводника и сопротивления проводника. (1 вариант выполняет, 2 вариант проверяет красной пастой). Работы выполняются в течение 5 минут (4+1) и сдаются учителю.

№ слайда 11

Описание слайда:

VI Рефлексия. 1. Движение электронов в металлическом проводнике, помещённом в электрическое поле В – является результатом наложения упорядоченного движения электронов, на хаотическое тепловое. 2. В каких единицах измеряется сила тока? Б – Кл/с, Г – А. 3. От чего зависит сила тока в проводнике? А – от величины заряда, его скорости, концентрации и площади поперечного сечения проводника, В – от величины заряда, прошедшего через поперечное сечение проводника и времени его прохождения, Г – от напряжения на концах проводника и сопротивления проводника. VII Подведение итогов.

№ слайда 12

Описание слайда: