Курсовая работа: Проектирование локальной вычислительной сети. Локальная сеть: Общие правила построения сети и ее основные компоненты Создание локальной сети предприятия

Курсовая работа: Проектирование локальной вычислительной сети. Локальная сеть: Общие правила построения сети и ее основные компоненты Создание локальной сети предприятия
Курсовая работа: Проектирование локальной вычислительной сети. Локальная сеть: Общие правила построения сети и ее основные компоненты Создание локальной сети предприятия

При Президенте Российской Федерации»

Брянский филиал

Кафедра математики и информационных технологий

Направление подготовки 230700.62 - Прикладная информатика

КУРСОВАЯ РАБОТА

Проектирование локальной вычислительной сети образовательного учреждения

Вариант 5

по курсу «Вычислительные системы, сети и телекоммуникации»

Кирюшин Р.О.

группа ПОО-12

Научный руководитель

Квитко Б.И.,

канд. техн. наук, проф. кафедры

Брянск 2014


ВВЕДЕНИЕ 3

1. ОПИСАНИЕ ПРЕДЛАГАЕМОГО ПРОЕКТНОГО РЕШЕНИЯ 9

1.1 ОПИСАНИЕ СХЕМЫ ОРГАНИЗАЦТ СВЯЗИ ЛВС 9

1.2 РАЗМЕЩЕНИЕ АКТИВНОГО ОБОРУДОВАНИЕ ЛВС 11

2. РАСЧЕТ КОМПОНЕНТОВ СКС 23

2.1 КАБЕЛИ И КАБЕЛЬНАЯ СИСТЕМА 30

2.2 КАБЕЛЬНЫЕ КАНАЛЫ И МОНТАЖНОЕ ОБОРУДОВАНИЕ 36

3.ИТОГОВАЯ КАЛЬКУЛЯЦИЯ 39

ЗАКЛЮЧЕНИЕ 49

СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 40

Введение

Локальные вычислительные сети - это сети, предназначенные для обработки, хранения и передачи данных, и представляет из себя кабельную систему объекта (здания) или группы объектов (зданий). На сегодняшний день трудно представить работу современного офиса без локальной вычислительной сети, без информационно-вычислительной сети сейчас не обходиться не одно предприятие.



Причиной создания локальной сети является:

· Контроль за доступом к важным документам;

· Совместная обработка информации;

· Совместное использование файлов.

Актуальность выполнения данной работы заключается в том, что обеспечение фирмы компьютерами с наличием локальной вычислительной сети и доступом в интернет дает сотрудникам:

· Производить быструю обработку бумажной информации, её хранение;

· Вести электронную базу своих клиентов;

· Иметь доступ к последним новейшим статьям, законам и т.д. находящимся в сети Интернет;

· Пользоваться локальной и защищенной электронной почтой.

Объект исследования – компьютерные сети.

Предмет исследования – локальная вычислительная сеть.

Цель выполнения курсовой работы является приобретение практических навыков анализа технического задания и проектирование ЛВС стандарта IEEE 802.3 (Ethernet).

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

Для проведения работы нам нужно будет хорошо ознакомиться с ЛВС, узнать все ее нюансы. Для этой задачи нам потребуется анализ литературы по этой теме.

План расположения корпусов зданий изображен на рисунке 1.

Помещения, в которых будут расположены рабочие места, объединенные создаваемой ЛВС, представлены в таблице 1.


Здание Этаж Номер комнаты Число компьютеров
Итого: 40 компьютеров + сервер
Итого: 51 компьютер + сервер в 216 кабинете
Итого: 91 компьютер + 2 сервера

Планы рассматриваемых этажей помещений приведены на рис. 2, 3, 4.




Рисунок 4. План третьего этажа здания 2

Помещения, представленные на строительных планах, имеют следующий размеры: один «оконный шаг» (ширина однооконной комнаты) – В 0 =4м; глубина всех комнат (от входа к окну) – L 0 =6м; ширина многооконной комнаты – В j =В 0 ·m, где m – число окон, j – номер комнаты; ширина коридора – В к =2м; высота всех помещений – Н=3м.

Рабочие станции и серверное оборудование должны подключаться к ЛВС по технологии IEEE 802.3 1000BASE-T. Соседние здания должны быть соединены по технологии IEEE 802.3ab (гигабитные сети на основе оптоволоконного кабеля), способ прокладки ВОК - подземный. Рекомендуется использовать активное оборудование HP. Максимальное время электропитания от накопителей ИБП – 20 мин. Проектом должно быть предусмотрено выделение специальных помещений для организации рабочего места администратора сети и размещения активного оборудования ЛВС. Назначением проектируемой ЛВС является обеспечение связи между указанными этажами двух зданий, в которых располагается образовательное учреждение, а также информационный обмен между классами в пределах этажа. Курсовая работа выполняется по унифицированному техническому заданию (ТЗ) на проектирование локальной вычислительной сети образовательного учреждения.

1. Описание предлагаемого проектного решения

Описание схемы организации связи ЛВС

Топология сети - звезда. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая (по сравнению с достигаемой в других топологиях). Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. В сети, построенной по топологии типа “звезда”, каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору. Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.

Данные от передающей станции сети передаются через концентратор по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается.

Однако данная топология имеет и свои недостатки, например, производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

В соответствии с техническим заданием при проектировании будут использоваться следующие технологии:

· Gigabit Ethernet (IEEE 802.3ab 1000Base T). Данную технологию будем использовать для соединения абонентов ЛВС и для соединения сервера с ЛВС вместо технологии Gigabit Ethernet IEEE 802.3 1000Base X. Спецификация IEEE 802.3ab была предложена в 1999 году для того, чтобы обеспечить передачу данных со скоростью 1000 Мбит/сек по кабелю UTP 5e категории и при этом увеличить максимальную длину сегмента сети до 100 м.

· IEEE 802.3ab 1000Base-SX. Данную технологию будем использовать для соединения зданий и коммутаторов внутри одного здания (расположенных далеко друг от друга), так как она позволяет соединять сегменты сети, находящиеся на расстоянии до 550 м, скорость передачи 1000 Мбит/сек, для соединения используется оптоволоконный кабель (многомодовое волокно) 50 или 62,5 мкм.

Для организации горизонтальной подсистемы (подсистемы этого типа соответствуют этажам здания) лучше всего использовать экранированную витую пару 5e категории. Хотя она не так удобна для прокладки в помещениях как неэкранированная витая пара (и значительно дороже), сеть, построенная на экранированных компонентах, работает значительно надежнее и удовлетворяет требованиям по излучению и помехозащищенности, установленным европейскими нормами EN 55022 (класс В) и EN 50082-1. Она позволяет передавать данные со скоростью 1000 Мбит/сек.

Для организации вертикальной кабельной системы, которая соединяет этажи здания, будет использоваться оптоволоконный кабель, предназначенный для прокладки внутри помещений. Преимущество ВОК: передает данные на большие расстояния, не чувствителен к электромагнитным и радиочастотным помехам. Основным недостатком ВОК является его стоимость и стоимость прокладки.

Функцией подсистемы кампуса будет являться объединение в сеть подсистем двух зданий. Для вертикальной подсистемы и подсистемы кампуса будет использоваться технология 1000 Base-SX.

Cамая большая проблема, с которой я сталкиваюсь при работе с сетями предприятий - это отсутствие чётких и понятных логических схем сети. В большинстве случаев я сталкиваюсь с ситуациями, когда заказчик не может предоставить никаких логических схем или диаграмм. Сетевые диаграммы (далее L3-схемы) являются чрезвычайно важными при решении проблем, либо планировании изменений в сети предприятия. Логические схемы во многих случаях оказываются более ценными, чем схемы физических соединений. Иногда мне встречаются «логически-физически-гибридные» схемы, которые практически бесполезны. Если вы не знаете логическую топологию вашей сети, вы слепы . Как правило, умение изображать логическую схему сети не является общим навыком. Именно по этой причине я пишу эту статью про создание чётких и понятных логических схем сети.

Какая информация должна быть представлена на L3-схемах?
Для того, чтобы создать схему сети, вы должны иметь точное представление о том, какая информация должна присутствовать и на каких именно схемах. В противном случае вы станете смешивать информацию и в итоге получится очередная бесполезная «гибридная» схема. Хорошие L3-схемы содержат следующую информацию:
  • подсети
    • VLAN ID (все)
    • названия VLAN"ов
    • сетевые адреса и маски (префиксы)
  • L3-устройства
    • маршрутизаторы, межсетевые экраны (далее МСЭ) и VPN-шлюзы (как минимум)
    • наиболее значимые серверы (например, DNS и пр.)
    • ip-адреса этих серверов
    • логические интерфейсы
  • информацию протоколов маршрутизации
Какой информации НЕ должно быть на L3-схемах?
Перечисленной ниже информации не должно быть на сетевых схемах, т.к. она относится к другим уровням [модели OSI , прим. пер. ] и, соответственно, должна быть отражена на других схемах :
  • вся информация L2 и L1 (в общем случае)
  • L2-коммутаторы (может быть представлен только интерфейс управления)
  • физические соединения между устройствами
Используемые обозначения
Как правило, на логических схемах используются логические символы. Большинство из них не требуют пояснений, но т.к. я уже видел ошибки их применения, то позволю себе остановиться и привести несколько примеров:
Какая информация необходима для создания L3-схемы?
Для того, чтобы создать логическую схему сети, понадобится следующая информация:
  • Схема L2 (или L1) - представление физических соединений между устройствами L3 и коммутаторами
  • Конфигурации устройств L3
  • Конфигурации устройств L2 - текстовые файлы либо доступ к GUI, и т.д.
Пример
В данном примере мы будем использовать простую сеть. В ней будут присутствовать коммутаторы Cisco и МСЭ Juniper Netscreen. Нам предоставлена схема L2, также как и конфигурационные файлы большинства представленных устройств. Конфигурационные файлы пограничных маршрутизаторов ISP не предоставлены, т.к. в реальной жизни такую информацию ISP не передаёт. Ниже представлена L2-топология сети:

А здесь представлены файлы конфигурации устройств. Оставлена только необходимая информация:

asw1

!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
switchport mode trunk
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 250
ip address 192.168.10.11 255.255.255.128
!


asw2

!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 250
ip address 192.168.10.12 255.255.255.128
!
ip default-gateway 192.168.10.1


asw3

!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 250
ip address 192.168.10.13 255.255.255.128
!
ip default-gateway 192.168.10.1


csw1

!
vlan 200
name in-transit
!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 200
ip address 10.0.0.29 255.255.255.240
standby 1 ip 10.0.0.28
!
interface vlan 210
ip address 192.168.0.2 255.255.255.128
standby 2 ip 192.168.0.1
!
interface vlan 220
ip address 192.168.0.130 255.255.255.128
standby 3 ip 192.168.0.129
!
interface vlan 230
ip address 192.168.1.2 255.255.255.128
standby 4 ip 192.168.1.1
!
interface vlan 240
ip address 192.168.1.130 255.255.255.128
standby 5 ip 192.168.1.129
!
interface vlan 250
ip address 192.168.10.2 255.255.255.128
standby 6 ip 192.168.10.1
!


csw2

!
vlan 200
name in-transit
!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface GigabitEthernet0/3
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface GigabitEthernet0/4
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/5
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/6
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 200
ip address 10.0.0.30 255.255.255.240
standby 1 ip 10.0.0.28
!
interface vlan 210
ip address 192.168.0.3 255.255.255.128
standby 2 ip 192.168.0.1
!
interface vlan 220
ip address 192.168.0.131 255.255.255.128
standby 3 ip 192.168.0.129
!
interface vlan 230
ip address 192.168.1.3 255.255.255.128
standby 4 ip 192.168.1.1
!
interface vlan 240
ip address 192.168.1.131 255.255.255.128
standby 5 ip 192.168.1.129
!
interface vlan 250
ip address 192.168.10.3 255.255.255.128
standby 6 ip 192.168.10.1
!
ip route 0.0.0.0 0.0.0.0 10.0.0.17


fw1




set interface ethernet0/1 manage-ip 10.0.0.2

set interface ethernet0/2 manage-ip 10.0.0.18


fw2

set interface ethernet0/1 zone untrust
set interface ethernet0/1.101 tag 101 zone dmz
set interface ethernet0/1.102 tag 102 zone mgmt
set interface ethernet0/2 zone trust
set interface ethernet0/1 ip 10.0.0.1/28
set interface ethernet0/1 manage-ip 10.0.0.3
set interface ethernet0/1.101 ip 10.0.0.33/28
set interface ethernet0/1.102 ip 10.0.0.49/28
set interface ethernet0/2 ip 10.0.0.17/28
set interface ethernet0/2 manage-ip 10.0.0.19
set vrouter trust-vr route 0.0.0.0/0 interface ethernet0/1 gateway 10.0.0.12


outsw1

!
vlan 100
name Outside
!
vlan 101
name DMZ
!
vlan 102
name Mgmt
!
description To-Inet-rtr1
switchport mode access
switchport access vlan 100
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 102
ip address 10.0.0.50 255.255.255.240
!


outsw2

!
vlan 100
name Outside
!
vlan 101
name DMZ
!
vlan 102
name Mgmt
!
interface GigabitEthernet1/0
description To-Inet-rtr2
switchport mode access
switchport access vlan 100
!
interface GigabitEthernet1/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet1/3
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface GigabitEthernet1/4
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 102
ip address 10.0.0.51 255.255.255.240
!
ip default-gateway 10.0.0.49

Сбор информации и её визуализация
Хорошо. Теперь, когда мы имеем всю необходимую информацию, можно приступать к визуализации.
Процесс отображения шаг за шагом
  1. Сбор информации:
    1. Для начала откроем файл конфигурации (в данном случае ASW1).
    2. Возьмём оттуда каждый ip-адрес из разделов интерфейсов. В данном случае есть только один адрес (192.168.10.11 ) с маской 255.255.255.128 . Имя интерфейса - vlan250 , и имя vlan 250 - In-mgmt .
    3. Возьмём все статические маршруты из конгфигурации. В данном случае есть только один (ip default-gateway), и он указывает на 192.168.10.1 .
  2. Отображение:
    1. Теперь давайте отобразим информацию, которую мы собрали. Во-первых, нарисуем устройство ASW1 . ASW1 является коммутатором, поэтому используем символ коммутатора.
    2. Нарисуем подсеть (трубку). Назначим ей имя In-mgmt , VLAN-ID 250 и адрес 192.168.10.0/25 .
    3. Соединим ASW1 и подсеть.
    4. Вставляем текстовое поле между символами ASW1 и подсети. Отобразим в нём имя логического интерфейса и ip-адрес. В данном случае имя интерфейса будет vlan250 , и последний октет ip-адреса - .11 (это является общей практикой - отображать только последний октет ip-адреса, т.к. ip-адрес сети уже присутствует на схеме).
    5. Также в сети In-mgmt есть другое устройство. Или, как минимум, должно быть. Нам ещё неизвестно имя этого устройства, но его IP-адрес 192.168.10.1 . Мы узнали это потому, что ASW1 указывает на этот адрес как на шлюз по-умолчанию. Поэтому давайте отобразим это устройство на схеме и дадим ему временное имя "??". Также добавим его адрес на схему - .1 (кстати, я всегда выделяю неточную/неизвестную информацию красным цветом, чтобы глядя на схему можно было сразу понять, что на ней требует уточнения).
На этом этапе мы получаем схему, подобную этой:

Повторите этот процесс шаг за шагом для каждого сетевого устройства . Соберите всю информацию, относящуюся к IP, и отобразите на этой же схеме: каждый ip-адрес, каждый интерфейс и каждый статический маршрут. В процессе ваша схема станет очень точной. Убедитесь, что устройства, которые упомянуты, но пока неизвестны, отображены на схеме. Точно так же, как мы делали ранее с адресом 192.168.10.1 . Как только вы выполните всё перечисленное для всех известных сетевых устройств, можно начать выяснение неизвестной информации. Вы можете использовать для этого таблицы MAC и ARP (интересно, стоит ли писать следующий пост, рассказывающий подробно об этом этапе?).

В конечном счёте мы будем иметь схему наподобие этой:

Заключение
Нарисовать логическую схему сети можно очень просто, если вы обладаете соответствующими знаниями. Это продолжительный процесс, выполняемый вручную, но это отнюдь не волшебство. Как только у вас есть L3-схема сети, достаточно нетрудно поддерживать её в актуальном состоянии. Получаемые преимущества стоят приложенных усилий:
  • вы можете планировать изменения быстро и точно;
  • решение проблем занимает гораздо меньше времени, чем до этого. Представим, что кому-то нужно решить проблему недоступности сервиса для 192.168.0.200 до 192.168.1.200. После просмотра L3-схемы можно с уверенностью сказать, что МСЭ не является причиной данной проблемы.
  • Вы можете легко соблюдать корректность правил МСЭ. Я видел ситуации, когда МСЭ содержали правила для трафика, который никогда бы не прошёл через этот МСЭ. Этот пример отлично показывает, что логическая топология сети неизвестна.
  • Обычно как только L3-схема сети создана, вы сразу заметите, какие участки сети не имеют избыточности и т.д. Другими словами, топология L3 (а также избыточность) является такой же важной как избыточность на физическом уровне.

Крупные компании имеют в обороте большой объем данных разного характера:

  • текстовые файлы;
  • графические;
  • изображения;
  • таблицы;
  • схемы.

Для руководства важно, чтобы вся информация имела удобный формат, легко конвертировалась и передавалась на любом носителе в нужные руки. Но бумажные документы давно начали сменяться оцифрованными, так как компьютер может содержать множество данных, с которыми намного удобнее работать с помощью автоматизации процессов. Также этому способствует перемещение сведений, отчетов и договоров партнерам или проверяющим компаниям без длительных переездов.

Так появилась необходимость повсеместного снабжения отделов фирм электронно-вычислительными устройствами. Вместе с этим встал вопрос о соединении этих приборов в единый комплекс для защиты, сохранности и удобства перемещения файлов.

В этой статье мы расскажем, как облегчить проектирование локальной вычислительной (компьютерной) сети на предприятии.

Что такое ЛВС, ее функции

Это связующее подключение ряда компьютеров в одно замкнутое пространство. Часто такой метод используется в крупных компаниях, на производстве. Также можно самостоятельно создать небольшую связь из 2 – 3 приборов даже в домашних условиях. Чем больше включений в структуру, тем она становится сложнее.

Виды составления сетей

Бывает два типа подключения, они различаются по сложности и наличию руководящего, центрального звена:

  • Равноправные.
  • Многоуровневые.

Равнозначные, они же одноранговые, характеризуются схожестью по техническим характеристикам. На них идет одинаковое распределение функций – каждый пользователь может получить доступ во все общие документы, совершить одинаковые операции. Такая схема легка в управлении, для ее создания не требуется множественных усилий. Минусом является ее ограниченность – не более 10 членов может вступить в этот круг, в ином случае нарушается общая эффективность работы, скорость.

Серверное проектирование локальной сети компании более трудоемкое, однако, у такой системы выше уровень защиты информации, а также есть четкое распределение обязанностей внутри паутины. Самый лучший по техническим характеристикам (мощный, надежный, с большей оперативной памятью) компьютер назначается сервером. Это центр всей ЛВС, здесь хранятся все данные, с этой же точки можно открывать или прекращать доступ к документам другим пользователям.

Функции компьютерных сетей

Основные свойства, которые нужно учесть при составлении проекта:

  • Возможность подключения дополнительных устройств. Первоначально в сетке может находиться несколько машин, с расширением фирмы может понадобится дополнительное включение. При расчете мощности на это стоит обратить внимание, иначе понадобится делать перепланировку и докупать новые расходные материалы повышенной прочности.
  • Адаптация под разные технологии. Необходимо обеспечить гибкость системы и ее приспособленность к разным сетевым кабелям и разным ПО.
  • Наличие резервных линий. Во-первых, это относится к точкам выхода рядовых компьютеров. При сбое должна быть возможность подключить другой шнур. Во-вторых, нужно обеспечить бесперебойность работы сервера при многоуровневом подключении. Это можно сделать, обеспечив автоматический переход на второй концентратор.
  • Надежность. Оснащение бесперебойниками, резервами автономной энергии, чтобы минимизировать возможность перебоя связи.
  • Защита от посторонних влияний и взлома. Хранящиеся данных можно защищать не просто паролем, а целой связкой приспособлений: концентратор, коммутатор, маршрутизатор и сервер удаленного доступа.
  • Автоматизированное и ручное управление. Важно установить программу, которая будет анализировать состояние сетки в каждый момент времени и оповещать о неисправностях для быстрого их устранения. Пример такого софта – RMON. При этом можно использовать и личный мониторинг через интернет-серверы.

Составление технических требований для проектирования и расчета локальной сети (ЛВС) на предприятии

Из свойств выходят условия, которые нужно учитывать при составлении проекта. Весь процесс конструирования начинается с составления технического задания (ТЗ). Оно содержит:

  • Нормы по безопасности сведений.
  • Обеспечение всем подключенным компьютерам доступа к информации.
  • Параметры по производительности: время реакции от запроса пользователя до открытия нужной страницы, пропускная способность, то есть объем данных в работе и задержка передачи.
  • Условия надежности, то есть готовность длительной, даже постоянной работы без перебоев.
  • Замену комплектующий – расширение сетки, дополнительные включения или монтаж аппаратуры другой мощности.
  • Поддержку разных видов трафика: текст, графика, мультимедийный контент.
  • Обеспечение централизованного и дистанционного управления.
  • Интеграцию различных систем и программных пакетов.

Когда ТЗ составлено с соблюдением потребностей пользователей, выбирается вид включенности всех точек в одну сеть.

Основные топологии ЛВС

Это способы физического соединения устройств. Самые частотные представлены тремя фигурами:

  • шина;
  • кольцо;
  • звезда.

Шинная (линейная)

При сборке используется один ведущей кабель, от него уже отходят провода к пользовательским компьютерам. Основной шнур напрямую подключен к серверу,который хранит информацию. В нем же происходит отбор и фильтрация данных, предоставление или ограничение доступов.


Преимущества:

  • Отключение или проблемы с одним элементом не нарушают действия остальной сетки.
  • Проектирование локальной сети организации довольно простое.
  • Относительно низкая стоимость монтажа и расходных материалов.

Недостатки:

  • Сбой или повреждение несущего кабеля прекращает работу всей системы.
  • Небольшой участок может быть подключен таким образом.
  • Быстродействие может от этого страдать, тем более если связь проходит между более чем 10 устройствами.

«Кольцо» (кольцевая)

Все пользовательские компьютеры соединены последовательно – от одного прибора к другому. Так часто делают в случае одноранговых ЛВС. В целом эта технология применяется все реже.


Преимущества:

  • Нет расходов на концентратор, маршрутизатор и прочее сетевое оборудование.
  • Передавать информацию могут сразу несколько пользователей.

Недостатки:

  • Скорость передачи во всей сетке зависит от мощности самого медленного процессора.
  • При неполадках в кабеле или при отсутствии подключения любого элемента прекращается общая работа.
  • Настраивать такую систему достаточно сложно.
  • При подключении дополнительного рабочего места необходимо прерывать общую деятельность.

«Звезда»

Это параллельное включение устройств в сеть к общему источнику – серверу. Как цент чаще всего применяется хаб или концентратор. Все данные передаются через него. Таким способом может осуществляться работа не только компьютеров, но и принтеров, факсов и прочего оборудования. На современных предприятиях это самый частотный применяемый метод организации деятельности.


Преимущества:

  • Легко выполнить подключение еще одного места.
  • Производительность не зависит от быстродействия отдельных элементов, поэтому остается на стабильном высоком уровне.
  • Просто найти поломку.

Недостатки:

  • Неисправность центрального прибора прекращает деятельность всех пользователей.
  • Количество подключений обусловлено числом портов серверного устройства.
  • На сетку расходуется много кабеля.
  • Дороговизна оборудования.

Этапы программного проектирования ЛВС

Это многоступенчатый процесс, который требует компетентного участия многих специалистов, так как следует предварительно рассчитать необходимую пропускную способность кабелей, учесть конфигурацию помещений, установить и настроить технику.

Планирование помещений организации

Следует расположить кабинеты работников и начальства в соответствии с выбранной топологией. Если для вас подходит форма звезды, то стоит поместить основную технику в ту комнату, что является основной и располагается в центре. Это же может быть офис руководства. В случае шинного распределения, сервис может находиться в самом удаленном по коридору помещении.

Построение схемы локальной сети


Чертеж можно сделать в специализированных программах автоматизированного проектирования. Идеально подходят продукты компании «ЗВСОФТ» – в них содержатся все базовые элементы, которые потребуются при построении.

Сетка должна учитывать:

  • максимальное напряжение;
  • последовательность вхождений;
  • возможные перебои;
  • экономичность установки;
  • удобная подача электроэнергии.

Характеристики ЛВС необходимо подбирать в соответствии с планом помещений организации и используемым оборудованием.

Параметры компьютеров и сетевых устройств

При выборе и покупке элементов сетки важно учитывать следующие факторы:

  • Совместимость с разными программами и новыми технологиями.
  • Скорость передачи данных и быстродействие аппаратов.
  • Количество и качество кабелей зависит от выбранной топологии.
  • Метод управления обменов в сети.
  • Защищенность от помех и сбоев обмоткой проводов.
  • Стоимость и мощность сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов.

Принципы проектирования ЛВС с помощью компьютерных программ

При составлении проекта важно учесть большое количество нюансов. В этом поможет программное обеспечение от ZWSOFT. Компания занимается разработкой и продажей многофункциональных софтов для автоматизации работы инженеров-проектировщиков. Базовый САПР – является аналогом популярного, но дорогого пакта от Autodesk – AutoCAD, но превосходит его по легкости и удобству лицензирования, а также по более лояльной ценовой политике.


Преимущества программы:

  • Интуитивно понятный, удобный интерфейс в черном цвете.
  • Широкий выбор инструментов.
  • Работа в двухмерном и трехмерном пространстве.
  • 3D-визуализация.
  • Интеграция с файлами большинства популярных расширений.
  • Организация элементов ЛВС в виде блоков.
  • Подсчет длин кабельных линий.
  • Наглядное расположение элементов и узлов.
  • Одновременная работа с графикой и текстовыми данными.
  • Возможность установки дополнительных приложений.

Для ZWCAD – модуль, который расширяет функции базового САПРа в сфере проектирования мультимедийных схем. Все чертежи выполняются с автоматизированным расчетом кабелей локальной вычислительной сети и их маркировкой.

Преимущества:

  • автоматизация подбора коммутационных систем;
  • широкая библиотека элементов;
  • параллельное заполнение кабельного журнала;
  • автоматическое создание спецификаций;
  • добавление оборудования в библиотеку;
  • одновременная работа нескольких пользователей с базой данных;
  • схематичные отметки расположения устройств и предметов мебели.

Поможет сделать проект в объемном виде, создать его в 3D. Интеллектуальные инструменты позволяют быстро проложить трассы ЛВС до точек подключения, наглядно представить места прохождения кабелей, организовать пересечения линий, выполнить разрезы подключаемого оборудования и технологической мебели (в том числе в динамическом режиме). С помощью редактора компонентов можно создать библиотеку как шкафов, коммутационных аппаратов, кабелей, зажимов и проч., а также присвоить им характеристики, на основе которых в дальнейшем можно составить спецификации и калькуляции. Таким образом, функции этого софта помогут завершить генплан помещений организации с трассировкой всех линий ЛВС.

Создавайте проект локальной вычислительной сети в своем предприятии вместе с программами от «ЗВСОФТ».