Блоки управления для генератора со статической системой. Схемы авр для генератора

Блоки управления для генератора со статической системой. Схемы авр для генератора
Блоки управления для генератора со статической системой. Схемы авр для генератора

Huter DY3000L. Общий вид

Статья родилась, когда я был приглашён в качестве специалиста, чтобы подключить генератор Huter без автозапуска на даче. Причём, передо мной была поставлена задача, чтобы схема подключения генератора была максимально безопасна и требовала минимального вмешательства потребителя (конечного пользователя). То есть, была собрана схема Автоматического Включения Резервного питания (АВР), варианты которой и будут рассмотрены в статье.

А про то, как устроен этот генератор, . Приведена также его электрическая схема.

Как всегда, рассмотрим теоретическую сторону вопроса, проведём анализ, а затем я приведу несколько схем АВР, от простой к сложной.

Подключение генератора. Варианты схем АВР для генератора

Сразу скажу, что генератор тут ни при чём, это в данном случае всего лишь источник резервного питания. В качестве этого источника может быть не только генератор, но и вторая фаза, и фаза с другой подстанции или другой линии. Схемы Автоматического включения резерва (АВР) универсальны и могут работать в разных ситуациях.

В принципе, что тут подключать? У генератора есть обычная розетка, в комплекте штепсельная вилка, какие проблемы? Но куда идёт провод от вилки? И как сделать так, чтобы схема подключения была удобной, правильной, а главное – безопасной?

Самое опасное в подключении генератора – это когда встретятся напряжения с генератора и из города. Или напряжение с генератора пойдёт в город, где на линии работает бригада в полной уверенности, что сеть обесточена. А ПЗ (переносное заземление) не наложено(

Казалось бы, что проще – поставить переключатель, и нет проблем.

В конце статьи – фото с примером такого переключателя.

Так многие и делают, и я так делаю, в зависимости от финансовых возможностей клиента. Только не надо забывать о двух важных вещах:

  1. Не переключать под нагрузкой!
  2. Правильно подобрать защиту и ток рубильника (переключателя).

Но мы не ищем лёгких путей, нам подавай автоматику и защиту от аварий и человеческого фактора.

Поэтому предлагаю рассмотреть второй вариант схемы:

2. Схема подключения генератора через реле контроля напряжения. Простейшая схема АВР.

Во второй схеме АВР применяется реле контроля напряжения KV. Фактически это обычное реле, которое находится во включенном состоянии, когда напряжение из города в норме. И перекидной контакт будет в левом по схеме положении.

Когда напряжение из города пропадает, реле выключается, и схема приобретает изображенный вид – нагрузка питается от генератора.

Реле контроля напряжения – основа любой схемы АВР. Для однофазных схем это обычное реле, которое питается от основной фазы.

3. Схема подключения генератора через реле и контакторы. АВР с усилением

Третья схема отличается от второй тем, что она может пропускать через себя гораздо бОльший ток. Реле напряжения KV используется только по своему назначению – автоматически переключает нагрузку, подавая питание на катушку соответствующего пускателя.

Когда напряжение из города есть, KV включено, оно своим нормально открытым (НО) контактом включает контактор КМ1, и фаза L1 поступает на нагрузку (выход схемы L).

Когда напряжение из города поступать перестаёт, KV выключается, и своим НЗ контактом включает контактор КМ2, и фаза L2 поступает на нагрузку.

Схема прекрасная, и даже рабочая. Но использовать её крайне опасно. Из-за отсутствия защит от замыкания “фаза L1 на фазу L2”. Такое замыкание может произойти из-за неисправности (залипания контактов, заклинивания реле или контакторов), или из-за пресловутого человеческого фактора – что если колхозный электрик решит нажать пускатель КМ2, когда включен КМ1?

По статистике, в случае правильного отношения к плановым профилактическим работам, 90% неисправностей и аварий происходит из-за человеческого фактора!

Так вот, чтобы на порядок уменьшить вероятность аварий, на практике применяется такая схема АВР для генератора:

Отличие её от схемы 3 всего лишь в том, что в неё введены защиты от одновременного включения контакторов КМ1 и КМ2. Защита имеет две ступени – электрическая и механическая.

Электрическая блокировка реализована на НЗ контактах КМ1 и КМ2, которые взаимоисключают одновременное включение пускателей.

Ну а практическая схема автоматики, будет выглядеть так:

5. Схема АВР для подключения генератора с блокировками и защитами

Рвать “городской” ноль нужно для дополнительной безопасности. Дело в том, что на выходе генератора нет понятия “рабочий ноль” и “фаза”, и названы они так могут быть условно. И в случае залипания “фазного” контакта, когда ноль N1 не разорван (как в схеме 4) в городскую линию пойдёт напряжение 220В.

Эту схему я и собрал, сейчас покажу как.

Конструкция автоматики АВР для подключения генератора

5_Собранная и подключенная схема АВР. Не судите строго за монтаж.

Слева – два двухполюсных автомата, далее – реле РЭК77-3 на 3 переключающих контакта. Третий НО контакт, которой на схеме 5 не показан, он подключен параллельно выключателю двигателя SB1. Когда питание из города есть, генератор никак не запустить. А когда генератор работает, и питание из города появляется – генератор останавливается.

Пускатель КМ2+КМ1 – реверсивный, украинский . У каждого из них три силовые контакта запараллелены. Пускатель KМ1.N рвёт ноль, его катушка подключена параллельно катушке КМ1.L.

Кстати, Александрийские (Украинские) контакторы и теплушки много использовал на практике – у них оптимальное соотношение цена/качество. Но после известных событий 2014 года они пропали из продажи… Переходим на Китай.

Итого, вот такая получилась дачная автоматика для генератора:

Ещё схемы АВР для генераторов

Бонус – то, что нашёл в интернете полезного по теме. Трехфазные АВР. Отличаются только тем, что используется реле контроля фаз, и количеством контактов.

Трехфазный АВР от компании АМК. Резерв – генератор, ноль рвётся.

АВР на 3 фазы. Резерв – другая линия (подстанция), ноль общий, не рвётся.

Пример монтажа трехфазного АВР. Этот АВР смонтирован в щите высотой выше человеческого роста и установлен в отделении Сбербанка. Питается от разных городских линий.

Схема управления трехфазным АВР. Используется реле контроля фаз ЕЛ-11Е и промежуточное реле

Куча защит – на ЕЛ и на питание контакторов стоят свои автоматы. Я тоже у себя хотел поставить на схему управления автомат на пару ампер, но в последний момент передумал.

Механической блокировки нет. Но контакторы модульные, закрытые, да и кто будет в здравом уме в Сбербанке тыкать контакторы. В это помещение ещё попасть надо.

Важно! при запуске некоторых генераторов в первые секунды напряжение нестабильно. Это может отразиться негативно на некоторой нагрузке. Это надо учитывать, в нормальных АВР с контроллерами ставят задержку до минуты! Для разгона и выхода на режим.

UPD: Подключение котла к генератору.

Часто генератор покупают, чтобы использовать его в зимнее время для питания котла системы отопления. Тут имеются некоторые особенности.

Для фазозависимых котлов импортного производства важно, чтобы система питания была с глухозаземленной нейтралью, т.е. ноль и земля соединены вместе, и при подключении соблюдалась полярность (фаза-ноль).

Часто бывает, что если котёл воткнуть в розетку наоборот, т.е. поменять ноль и фазу, он перестает работать.

В случае с переносным генератором, который рассматривается в статье, нет ни нуля, ни фазы. Их надо сделать искусственно – один выход генератора будет фазой (L2), а второй (N2) сажаем на землю, т.е. заземляем.

Кроме того, как известно, котлы очень чувствительны к форме напряжения. А на выходе обычного генератора синус “грязный”, при случае сниму осциллограмму. Прежде всего это происходит, т.к. альтернатор, который вырабатывает электричество – щёточный, а из-за щёток происходит искрение, провалы, и подобные неприятные вещи.

Именно из-за этого для котлов не подходят Off-line и Smart UPS. Там на выходе – квазисинус с кучей гармоник, . А для котлов применяется Online UPS (источники бесперебойного питания с двойным преобразованием). Для такого UPS не особо важна форма, величина и частота напряжения на входе, ибо он из всей этой каши варит постоянное напряжение, из которого затем электронным способом получает чистый синус. И если котёл питается через такой ИБП, то можно использовать для его резервного питания обычный генератор.

Для котлов и другой чувствительной техники рекомендуют использовать инверторные генераторы – это генератор плюс онлайн ИБП. В состав инверторного генератора входит обычный генератор, который управляется контроллером, и инвертор, который выдает чистый синус – то, что надо котлам.

Дополнение к статье. Переключатель.

Привожу фото переключателя TDM МП-63, с помощью которого можно вручную производить переключение улица-генератор. Схема – вначале статьи.

Переключатель для коммутации источника напряжения. Стоит в среднем положении.

Внимание! 63А на корпусе – это не тепловой ток, и переключатель не “выбивает”, ! Это максимальный рабочий ток.

ООО «Независимые энергетические системы» на протяжении многих лет занимается производством на базе контроллеров собственного производства. В состав контроллера входят высококачественные комплектующие , что обуславливает высокую надежность наших блоков АВР.

В состав блока АВР электрогенератора входят:

  1. Плата контроллера автозапуска и автоматического ввода резерва электрогенератора собственного производства.
  2. Силовые ключи(контакторы)
  3. Зарядное устройство для зарядки аккумуляторной батареи электрогенератора.
  4. Переключатели выбора режимов работы блока.
  5. Кнопка-гриб аварийной остановки.

Основные функции

  • Обеспечение полного цикла работы электрогенетратора: автоматический запуск электрогенератора в случае проподания напряжения основного ввода, либо выхода напряжения основного ввода за установленный диапазон; прорев электрогенератора и подключение потребителей; контроль работы электрогенератора, защита от перегрузки; охлаждение и останов электрогенератора при появлении напряжения основного ввода.
  • Выбор типа резервируемой сети: однофазная сеть - однофазный электрогенератора, трехфазная сеть - однофазный электрогенератор, трехфазная сеть - трехфазный электрогенератор.
  • Работа с бензиновыми , дизельными и газовыми электрогенераторами .
  • Управление приводом воздушной заслонки(соленоид с возвратной пружиной, двигатель постоянного тока) бензиновых и газовых электрогенераторов.
  • электрогнератора(опция).
  • Контроль напряжения аккумуляторных батарей источника бесперебойного питания(ИБП). Запуск электрогенератора при разряде АКБ ИБП.
  • Тестовый еженедельный запуск генератора , в установленное время и день недели.
  • Экономный режим работы электрогенератора(устанавливается время работы и время простоя электрогенератора)
  • Счетчик моточасов и счетчик времени до проведения ТО
  • Встроенный журнал событий и журнал аварий с указанием даты и времени.
  • Подключение к ПК для считывания/изменения параметров и режимов работы блока автоматики.
  • Расширение функицональности установкой дополнительных модулей: , .

Сводная таблица характеристик

Мах. мощность трехфазной сети/генератора до 15кВт до 30кВт до 30кВт до 30кВт до 30кВт
Мах. мощность однофазной сети/генератора до 7.5кВт до 15кВт до 15кВт до 15кВт до 15кВт
Напряжение,В 220/380 220/380 220/380 220/380 220/380
Максимальный коммутируемый ток,А 32 63 63 63 65
Производитель контактора IEK КЗЭ Кашин КЗЭ Кашин КЗЭ Кашин Shneider Electric
Зарядное устройство да, до 5А да, до 5А да, до 5А да, до 5А да, до 5А
Встроенный байпас да да да да да
Встроенный дисплей нет нет нет да нет
Встроенный GSМ-модем нет нет нет нет да
Еженедельный тестовый запуск да да да да да
Режим Работа-отдых да да да да да
Счетчик моточасов, время до ТО да да да да да
Контроль температуры двигателя да да да да да
Контроль аккумулятора ИБП нет нет да да да
Подключение к ПК() да да да да да
Подключение внешнего дисплея() да да да да да
Установка да да да да нет
Габариты(ШиринаXВысотаXГлубина),мм 400x400x155 400x400x155 400x500x155 400x500x155 400x500x155
Вес, кг 15 19 25 25 25
Степень защиты IP31 IP31 P31 P31 P31

Отличительные особенности

В состав блока входят высококачественные силовые ключи(контакторы) с механической и электрической защитой от встречных токов российского производства.
Установлено мощное зарядное устройство аккумуляторной батареи электрогенератора.
Возможность контроля температуры картера двигателя бензинового генератора с целью управления воздушной заслонкой в зависимости от температуры двигателя, прогрева двигателя электрогенератора перед подключением потребителей, защиты двигателя от перегрева.
Возможность установки GSM-модема. Благодаря нему появляется возможность дистанционно посредством SMS-сообщений запускать/останавливать электрогенератор, контролировать режим работы блока, считывать телеметрические данные(напряжения по фазам, моточасы, время до технического обслуживания, заряд аккумуляторной батареи и т.д), настраивать ВСЕ параметры и константы блока АВР (количество попыток запуска, задержки на запуск останов электрогенератора, время еженедельного тестового запуска и т.д.)
Возможность подключения блока к персональному компьютеру по интерфейсу RS485 для настройки параметров и констант, считывания текущих измерений и т.д.
Встроенный байпас. В случае выхода из строя управляющего контроллера, существует возможность в ручную запустить электрогенератор переключить потребителей на резервную линию в случае пропадания основной сети.
Принудительный запуск/останов электрогенератора Пользователем с тумблера на блоке АВР.
Гриб «Аварийный стоп». Принудительный останов генератора в случае возникновения нештатной ситуации с блока АВР.

В этих генераторах статическая система, состоящая из неподвижных элементов (силового трансформатора, выпрямителей и т. д.), преобразует переменный ток на выводах генератора в постоянный для питания обмотки возбуждения и регулирования напряжения генератора.
Схема генератора со статической системой возбуждения (рис. 1) состоит из обмоток статора 1, обмоток ротора 2 и статической системы возбуждения (блока возбуждения и блока управления). Блок возбуждения состоит из силового трансформатора 3, селеновых выпрямителей 4, блока конденсаторов 5 и силовых выпрямителей питания 6. Элементы блока возбуждения смонтированы на литом основании, которое крепится к станине генератора и закрывается сверху колпаком. Блок управления 7 состоит из переключателей работы ПВ, резистора уставки напряжения РУ и отдельно стоящих резисторов для регулирования статизма 8. С помощью блоков 7 и 8, установленных на отдельном щите, управляют выходными параметрами генератора. Принцип работы генератора аналогичен работе генератора с машинной системой возбуждения, за исключением работы статической системы.

Рис. 1. Принципиальная схема генератора со статической системой возбуждения.

Для поддержания напряжения на выводах генератора неизменным при любой нагрузке необходимо, чтобы ток возбуждения генератора изменялся в соответствии со значением и характером его нагрузки. В статической системе возбуждения (рис. 1) использован принцип фазового компаундирования. В обмотке w2 компаундирующего трансформатора 3 и селеновых выпрямителях 4 происходит сложение и выпрямление двух составляющих тока возбуждения: от обмотки w1 пропорциональной напряжению генератора, и от обмотки wc, пропорциональной току генератора, сдвинутых относительно друг друга под углом, зависящим от характера нагрузки (cosφ).
Система статического возбуждения автоматически обеспечивает изменение тока возбуждения при изменении значения и характера нагрузки генератора. Так как выпрямители 4 имеют нелинейное сопротивление, что не обеспечивает начального самовозбуждения, в системе предусмотрен резонансный контур, образованный емкостью Хс конденсаторов С4-С6, подключенных к обмотке wK, и индуктивностью рассеяния XL первичной обмотки w-,. Специальным подбором параметров при частоте 50 Гц обеспечивают XL=XC, и тогда ток возбуждения уже не будет зависеть от сопротивления выпрямителей 4 и обмотки возбуждения в процессе начального самовозбуждения.
Параметры трансформатора 3 обеспечивают стабильность напряжения генератора при cos φ от 0,4 до 1,0 с точностью ±5%.
Для более точной стабилизации напряжения (±3%) служит специальная обмотка управления w„ в которую подается постоянный ток. При протекании постоянного тока по обмотке w, образуется магнитный поток, который замыкается по сердечнику трансформатора 3. С изменением протекающего по обмотке шу постоянного тока изменяется постоянный магнитный поток сердечника 3 и, следовательно, ток возбуждения генератора в обмотке Wz- Так как обмотка wy питается постоянным током от двух последовательно встречных источников: выпрямителя 4 (ток /в пропорционален напряжению возбуждения генератора) и выпрямителя питания 6 через резистор РУ и сопротивление статизма СС1 (ток /вп не зависит от нагрузки и неизменен для любого режима), то /у=/вп-(-/в) и, следовательно, напряжение возбуждения генератора будет увеличиваться с ростом нагрузки.
При нагрузке с меньшим cos φ напряжение возбуждения возрастает больше, чем при нагрузках с большим cos φ, и, следовательно, ток подмагничивания трансформатора 3 (Лш>/в) при реактивных нагрузках генератора будет уменьшаться больше, чем при активных. Благодаря этому осуществляется коррекция параметров системы фазового компаундирования и достигается большая точность регулирования напряжения генератора по нагрузке, чем при неуправляемом варианте фазового компаундирования.
Уставку напряжения генератора регулируют резистором РУ, включенным последовательно в цепь обмотки доу, а составляющую тока управления /Е можно корректировать резистором СС1.
Статическая система возбуждения обладает следующими достоинствами: отсутствием движущихся частей, высокой механической прочностью конструкций, надежностью и высокой точностью регулирования напряжения, небольшими эксплуатационными затратами.
Для начального возбуждения генераторы могут иметь резонансную систему с конденсаторами (генераторы типов ДГФ, ЕСС, ГСФ-100-БК, ОС, ГСС-104-4Б), или аккумуляторную батарею (ЕСС-5, ГСФ-100М, ГСФ-200), или генератор начального возбуждения (СГДС-11-46-4), или трансформатор напряжения (ЕСС-5). Принцип работы статической системы возбуждения одинаков для всех типов генераторов, за исключением схем начального возбуждения.
Техническая характеристика генераторов со статической системой возбуждения приведена в табл.

Технические характеристики генераторов ДЭС со статической системой возбуждения


Характеристика

ЕСС-82-4/М201

ЕСС-91-4/М201

ЕСС-5-61-4/М101

ЕСС-5-81-4/М101

Номинальная мощность. «Вт

Напряжение линейное, В

Ток статора. А

КПД при 100%-ной нагрузке

Частота вращения, об/мин

Размеры генератора, мм: длина

Масса генератора, кг

Продолжение табл.


Характеристика

ЕСС-5-92-6/М101

ЕСС-5-92-6/М101

Номинальная мощность, кВт

Напряжение линейное, В

Ток статора, А

КПД при 100%-ной нагрузке

Частота вращения, об/мин

Размеры генератора, мм:

Масса генератора, кг

Характеристика

ОС-52/М101.М201

ГСДС-11-46-4

Номинальная мощность, кВт

Напряжение линейное, В

Ток статора. А

КПД при 100%-Holi на-

Частота вращения, оо/мнн

Размеры генератора, мч: длина ширина высота

840 400
400

Масса генератора, кг

Генераторы ГСФ

Генераторы серии ГСФ имеют мощность 100 и 200 кВт, исполнение фланцевое, защищенное, на двух щитовых подшипниках, соединение с двигателем с помощью муфты и фланцевого подшипникового щита.

Устройство и принцип работы генератора ГСФ и генератора ДГФ аналогичны. Начальное возбуждение у генераторов ГСФ-200 и ГСФ-100М осуществляется подачей импульса постоянного тока от аккумуляторной батареи; начальное, возбуждение генератора ГСФ-100 БК осуществляется с помощью резонансной системы с конденсаторами.

Генераторы ГСС

В ДЭС используется только четырехполюсный генератор ГСС-104-4Б 10-го габарита и 4-й габаритной длины.
Исполнение генератора брызгозащищенное. с самовентиляцией, на двух щитовых подшипниках. Генератор сопрягается с приводным двигателем эластичной муфтой. Устройство и принцип действия этого генератора аналогичны устройству и принципу действия генератора ДГФ.

Генераторы СГДС

Серия СГДС имеет устройство, аналогичное устройству генератора СГД, но обмотка возбуждения питается от статической системы самовозбуждения, состоящей из трансформаторов фазового компаундирования, блока силовых выпрямителей, отдельного выпрямителя и генератора начального возбуждения. Работа системы возбуждения этого генератора аналогична работе статической системы возбуждения других генераторов.

Давайте подробнее ознакомимся с данным вопросом

  • Для чего Вам нужен генератор?
  1. Электрическая независимость
  2. Возможность всегда пользоваться благами 21 века
  3. Обеспечение работоспособности жизненно важной инфраструктуры, дома (дачи) или промышленного участка.
  • Что дает Вам автоматизация генератора?
  1. Автономность работы всех систем
  2. Время, которое можете потратить на другие важные задачи
  3. Обеспечение комфортного уровня проживания

Как же работает система автоматики для генератора?

При потере основной сети, контроллер щита системы автозапуска, выполняет попытку запуска генератора и при удачном исходе, после прогрева генератора, переключает нагрузку с основной сети на резервную. При неудачной попытке запуска, контроллер выполняет повторные попытки запуска. При появлении основной сети, контроллер через фиксированное время ожидания, переключает нагрузку на основную сеть, и после охлаждения генератора, отключает его. Алгоритм работы системы представлен на рис 1.

Рис 1. Как работает система автозапуска генератора

Как автоматизировать запуск генератора?

Система автоматизации запуска генератора, работает только с генераторами, укомплектованными электрическим стартером. Если Ваш генератор не имеет электрического стартера, то вы можете уточнить у производителя генератора, имеется ли возможность докупки и установки электростартера.

Рис 2. Электростартер генератора Honda.

При запуске двигатель раскручивается коллекторным электродвигателем, который представлен на рисунке 2. Коллекторный электродвигатель питается постоянным током, от аккумуляторной батареи (после запуска аккумулятор подзаряжается от генератора, приводимого в движение основным двигателем). Но у электрического стартера есть существенный недостаток, чтобы провернуть коленчатый вал холодного двигателя, особенно зимой, ему необходим большой пусковой ток, который выдаётся аккумулятором, стремительно теряющим максимальный ток и ёмкость с понижением температуры. Иногда, вместе с использованием слишком вязкого масла, это делает запуск на морозе невозможным. Несмотря на наличие указанных недостатков, использование электростартера наиболее удобный способ запуска двигателя как бензинового и дизельного, так и газового генераторов.

Чтобы избежать проблем запуска генератора в зимний период времени, лучше держать генератор в теплом помещении (или в специальном боксе для генератора). Но статистика показывает, что в среднем 40% наших покупателей оставляют генератор на улице. В таких случаях, мы рекомендуем в зимний период времени поменять свечи зажигания и использовать всесезонное полусинтетическое масло.

Что необходимо для автоматизации запуска генератора?

Для автоматизации генератора Вам необходимо будет приобрести Щит ATS (АВР) данный щит контролирует состояние сети и переключает сеть на резервное питание в нашем случи это электростанция.

У некоторых генераторов уже есть заводская система автоматического запуска генератора, но такие автоматизированные генераторы, как правило обходятся дороже, чем обычные генераторы с дополнительно установленной системой автоматического запуска (). При этом, в обоих случаях необходима установка щита авр () (), для предохранения от параллельного подключения генератор к основной сети, что может привести к серьезным повреждениям генератора или другим печальным последствиям.

Для тех генераторов, у которых нет заводской системы автоматики, можно приобрести контроллеры производства ООО «АНС-ГРУПП».

Наши контроллеры для автозапуска генератора:

  1. Блок автоматического запуска генератора БАЗГ-10 NEW ()
  2. Модуль согласования с щитом АВР (ATS) МС-1 ()
  3. Блок согласования с щитом АВР БС-1 ()
  4. Блок управления заслонкой БУЗ-1 ()
  5. Модуль согласования для дизельного генератора Дизел МС-1 ()
  6. Блок согласования для дизельного генератора БС-1 ()

Приводы для управления заслонкой генератора:

  1. Привод управления заслонкой генератора ПУЗ-1 ()
  2. Привод управления заслонкой генератора в виде рычага ПУЗ-2 рычаг ()
  3. Привод управления заслонкой генератора ПУЗ-универсал ()

Дополнительные опции, которые могут быть полезны.

  1. Дистанционный запуск и мониторинг системы по GSM каналу. Можно добавить в систему GSM модуль и получить возможность дистанционно, с помощью коротких сообщений SMS контролировать параметры системы, а также запускать/останавливать генератор. Это очень важный кирпичик системы. Даже если произойдет авария вы всегда будете в курсе событий и сможете повлиять на ситуацию. (Подробно…)
  2. Тестовый запуск генератора по расписанию. Можно добавить в систему программируемый таймер и у вас появится возможность запускать генератор в определенное время. (Подробно…)
  3. Учет времени работы генератора. Можно добавить в систему счетчик моточасов генератора. Таким образом вы всегда будете знать сколько наработал ваш генератор и не пора ли производить плановое техническое обслуживание. (Подробно…)
  4. Перекрытие топливной магистрали. Топливный клапан для электрогенератора, который будет перекрывать подачу топлива в двигатель во время простоя (Подробно…)
  5. Дистанционный автоматический запуск генератора с брелка. Можно добавить в систему радиомодуль и вы сможете заводить генератор дистанционно, по радиоканалу. (Подробно…)
  6. Термореле, термостатирование. Добавим в систему термореле и Ваш генератор будет запущен при понижении температуры в доме или повышении температуры в холодильнике. Таким образом можно существенно экономить топливо. Генератор будет обеспечивать электроэнергией котел или холодильник исключительно при необходимости. Пример такой системы представлен на рисунке ниже. (Подробно…)
Наша систем автоматического запуска генератора был успешно установлен на генераторах:
  • HUTER
  • PRORAB
  • ELITECH
  • Eisemann
  • ВЕПРЬ
  • БРИГАДИР
  • ТЕХЭНЕРГО
  • HYUNDAI
  • Hitachi
  • TIGER
  • GREEN POWER
  • GREEN FIELD
  • GESHT
  • NILSON
  • HONDA
  • ДАЧНИК
  • BRIGGS & STRATTON
  • Wolsh
  • Elemax
  • Robin-Subaru
  • Sturm!
  • Aiken
  • Fubag

и может легко устанавливаться на аналогичные модели с электростартером.

Управление источником резервного питания ручным запуском во многих случаях оправдано. Однако, для обеспечения непрерывного процесса функционирования электрического оборудования существует необходимость в бесперебойном питании. Актуальность вопроса автоматизации вводу резерва довольно часто выходит на первый план. С этой целью применяются устройства автоматического включения резерва (АВР). Современные устройства АВР для генератора – это надёжные приборы, исключающие участие человека в управлении резервным питанием.

Автоматическое управление запуском генераторов в случае пропадания сети позволяет возобновлять подачу электричества практически мгновенно или с небольшой задержкой. Таким образом, обеспечивается непрерывное функционирование электрооборудования, остановка которого может повлечь нежелательные последствия или спровоцировать аварийный режим в работе контролируемой системы. Оборудование дизельных и бензиновых генераторов объективно является необходимой мерой для повышения безопасности эксплуатации отдельных электрических приборов.

Что такое АВР

Это блок, состоящий из нескольких узлов, который в автоматическом режиме переключает нагрузку между основным и резервным источником тока. Некоторые однофазные и трёхфазные модели бензиновых и дизельных генераторов оборудованы изначально. Для переключения нагрузки потребуется только установить специальный переключатель после электросчётчика. Положение силовых контактов управляется основным источником электроэнергии.

Практически все модели с запуском электростанции от аккумулятора можно оборудовать автономными системами АВР. При этом для монтажа блоков резервного ввода применяются шкафы АВР. При этом щиты АВР (рисунок 1) можно размещать непосредственно возле либо устанавливать блоки в общем электрическом щите.

Рисунок 1. Пример электрического щита АВР

Основная функция блока АВР заключается в том, чтобы осуществить автоматический запуск электростанции после исчезновения электрического тока в общей сети, а затем подключить нагрузку к резервному электроснабжению. При возобновлении подачи электроэнергии блоком автоматики нагрузка переключается на основную электрическую сеть, а резервный источник отключается.

Классификация устройств АВР:

  • по количеству резервных секций;
  • классу напряжения;
  • типу резервной сети (применение в однофазных сетях или для трехфазных потребителей);
  • мощности обслуживаемой нагрузки;
  • времени задержки переключения.

Электрическую схему АВР можно настроить таким образом, чтобы обеспечить энергией не всей локальной сети, а лишь тех линий, которые являются критическими. Некоторые схемы позволяют учитывать приоритетность линий. В первую очередь питанием обеспечиваются те цепи, которые обеспечивают электричеством важные системы жизнеобеспечения. Такой подход позволяет рационально распределить нагрузки.

Устройство и принцип работы

АВР для генератора состоит из трёх взаимосвязанных основных блоков:

  • семейства контакторов, коммутирующих вводные и нагрузочные цепи;
  • логических и индикационных устройств;
  • блока релейных переключателей, предназначенных для управления генератором.

С целью повышения надёжности резервной энергосистемы устройства АВР могут комплектоваться дополнительными блоками. Например, включение в схему инверторов позволяет выровнять провалы в напряжениях, исключить временные задержки, сделать выходной ток более качественным.

Включение резервной линии обеспечивает контактная группа. За наличием вводного напряжения следит .

Рассмотрим принцип работы системы резервного питания на примере упрощённой схемы (рис. 2). В штатном режиме, когда питание осуществляется от основной сети, контакторный блок направляет электроэнергию на линии потребителей. На схеме показан дополнительный блок – инвертор, преобразующий постоянный ток от аккумулятора в переменный, напряжением 220 В.


Рис. 2. Упрощённая схема резервного питания

Сигнал о наличии вводного напряжения подаётся на блок логических и индикационных устройств. В номинальном режиме вся система находится в устойчивом состоянии. При аварии в основной сети (напряжение падает ниже установленного уровня) насыщение соленоида реле контроля фаз становится недостаточным для удерживания контактов в рабочем (нормально замкнутом) состоянии. Происходит разъединение контактов и отключение нагрузки от линии электропередач.

Если система оборудована инвертором, как показано на схеме, он переходит в режим генерации переменного тока, напряжением 220 В. Таким образом, потребители получают стабильное напряжение даже при полном отсутствии тока в коммерческой сети.

Если параметры линий электропередач не восстанавливаются в заданный промежуток времени, контролёр подаёт сигнал на запуск генератора. При поступлении от альтернатора стабильного напряжения, контакторы переключаются на резервную линию.

Автоматическое включение потребительской сети происходит следующим образом: на реле контроля фаз поступает напряжение, переключающее контакторы на основную линию. Цепь резервного питания разъединяется. Сигнал от контролёра поступает на механизм управления подачей топлива, который закрывает заслонку в бензиновом двигателе или перекрывает дизтопливо в системе питания дизеля. Электростанция отключается.

При полном автоматическом переключении участие оператора не требуется. Система надёжно защищена от взаимодействия встречных токов и КЗ. Для этого применяются дополнительные реле и механизмы блокировок, которые не показаны на схеме.

При необходимости оператор может переключать линии вручную с панели контролёра. Он также может изменять настройки блока управления, включать ручной или автоматический режим работы. Фото панели показано на рис. 3.


Рис. 3. Панель контролёра резервного питания

В АВР могут реализовываться несколько режимов функционирования:

  • ручной;
  • автоматический;
  • полуавтоматический.

Ручной режим чаще всего используют наладчики при настройке АВР.

Схемы подключения АВР и их описание

Основная функция АВР – автоматическое переключение вводов, причём таким способом, чтобы исключить встречные токи.

Простая схема на рис. 4 объясняет принцип переключения.


Рисунок 4. Схема АВР

Контакты КМ1и КМ2 взаимосвязаны. После размыкания одного контакта, замыкается другой. Они не могут быть одновременно включены.

Существует множество различных схем подключения автоматического ввода резерва, но принцип их построения всегда такой: АВР устанавливают между вводом и потребителями. Обычно после электросчётчика. Сам щит с автоматикой может располагаться где угодно, но принцип его подключения именно такой. Этот принцип наглядно иллюстрирует схема на рис. 5.


Рис. 5. Наглядная схема подключения АВР

Детальная схема подключения блока автоматического запуска генератора показана на рисунке 6. На схеме К1 и К2 – это контакторы. Цифрами в кружках обозначены номера клемм. Пользуясь этой схемой не сложно подключить такой блок самостоятельно.


Рис. 6. Детальная схема подключения блока автозапуска генератора (БАГ)

Принципиальная схема подключения АВР для частного дома показана на рис. 7.


Рис. 7. Принципиальная схема

В данной схеме применено АЗУ, обеспечивающее стабильное напряжение и непрерывное питание в локальной сети.

В качестве примера приводим две схемы для трёхфазного тока (рис. 8). На изображении В показано одностороннее исполнение(дополнительное реле напряжения PH). При таком подключении генератор запускается в автоматическом режиме, после прекращения подачи электроэнергии. Другими словами, ввод от генератора является резервным.

На изображении А – исполнение двухстороннее. Обе секции имеют одинаковый приоритет. Такое подключение позволяет переключать линии, не зависимо от наличия напряжения в каждой из них.


Рис. 8. Подключение АВР для трёхфазного тока

Выбор схемы зависит от поставленной задачи, которую вы намерены решить.

Самостоятельное изготовление АВР

Если вы приобрели генератор с электростартером, то можете самостоятельно автоматизировать процесс ввода резерва. Для этого необходимо подобрать схему, отвечающую особенностям вашей домашней сети. После этого купите все необходимые детали, с учётом мощностей потребителей.

Вам понадобится:

  1. Универсальный контроллёр.
  2. Контакторы (для самой простой схемы – не менее 2-х).
  3. Электрический шкаф.
  4. Трёхуровневый переключатель рабочих режимов.
  5. Блок питания на 1 – 3 Ампера.
  6. Автоматика для пуска/остановки двигателя генератора (если он не оборудован таковой).
  7. Соединительные кабели, рабочие инструменты.

Этапы работы:

  1. Установка шкафа. Выберите подходящее место для электрощита (желательно ближе к основному вводу).
  2. Монтаж деталей. Размещайте все узлы так, чтобы был доступ ко всем контакторам и клеммам.
  3. Подключение линий. Строго следуйте схемам и соблюдайте назначение клемм. Пользуйтесь обозначениями на крышках и корпусах приборов. Следите, чтобы провода не пересекались. В последнюю очередь присоединяйте провода ввода, разумеется, при отключённом вводном автомате.
  4. После монтажа обязательно протестируйте работоспособность блока АВР.

Выбор АВР

Приведенная ниже таблица поможет вам определиться с выбором типа АВР.

Таблица 1

Тип АВР Особенности устройства Действие
Одностороннего действия Две секции. Одна рабочая, а одна резервная Подключает резервную линию в случае пропадания напряжения на основной
Двухстороннего действия Секции равнозначные Можно подключить любую линию, не зависимо от наличия напряжения
С восстановлением Контролирует наличие напряжения на основном вводе после переключения на резервное питание При появлении напряжения на основной линии переводит схему (с небольшой задержкой) в исходное состояние
Без восстановления Переключает секции после пропадания напряжения на основном вводе Для перевода в основной режим требуется вмешательство оператора

Полезное видео