Часы с кнопками на arduino. Большие настенные часы с автояркостью на Arduino

Часы с кнопками на arduino. Большие настенные часы с автояркостью на Arduino
Часы с кнопками на arduino. Большие настенные часы с автояркостью на Arduino

Готовый проект в одном модуле включает в себя множество функций: часы с отображением даты и времени, секундомер, будильник, отслеживание движения (для автоматического отключения когда вас нет на месте).

Материалы:
- Arduino Uno
- LCD шилд (с кнопками, в проекте используется шилд от DFRobot)
- Коробка для корпуса
- Зуммер
- Инфракрасный датчик движения (PIR)
- Соединительные провода (мама/мама)
- Джек 2.1 мм
- Переходник для кроны 9В 2.1 мм / 5.5 мм
- Крона 9 В
- Часы реального времени

Шаг первый. Модуль часов реального времени.
Часто модуль часов поставляют в виде конструктора, который приходится собирать самому. Обычно сборка не вызывает проблем, плюс производители выпускают инструкции по сборке их модуля. Также батарейка идёт в комплекте с часами, её хватит более чем на три года.

Шаг второй. Коннектор питания.
Для упрощения подключения конструкции к Arduino автор использует джек на 2.1 мм с припаянными контактами. В коробке проделывают отверстие, и джек закрепляют клеем. Таким образом, подключение к Arduino не составит проблем. Крону просто установят на заднюю часть бокса. Если рассмотреть фото поближе можно заметить ещё одно отверстие в коробке. Его делать не нужно, это просто неудачная попытка сделать отверстие, в него джек просто не влез.

Шаг третий. Подсоединение проводов.
Автором были приобретены разноцветные провода мама/мама. Обошлись они недорого, но сильно облегчили процесс сборки. Проводники подключили к зуммеру, ПИР датчику движения, модулю часов, чтобы потом все это подсоединить к LCD шилду.

Шаг четвёртый. Подключение к LCD шилду.
На шилде имеется 5 рядов контактов, их пины на Arduino 1-5 соответственно. Имеется контакт для 5 В и GND, это всё и использовалось для подключения. Для передачи данных с зуммером, датчиком и часами реального времени используются аналоговые пины Arduino. Датчик с часами, конечно же, подключали к земле и питанию.

Шаг пятый. Установка в коробку.
В этом шаге конструкцию помещают в отдельный бокс. В первую очередь в коробку укладывают кабели от LCD шилда. Arduino закрепляют винтом нижней правой части корпуса. Для удержания микроконтроллера достаточно одного винта, тем более что автор использует такой бокс, в котором рёбра жёсткости располагаются на месте отверстий для двух других винтов. Далее, на Arduino устанавливают LCD шилд, кабели которого огибают плату с правой стороны (видно на фото ниже). Модуль часов отлично подходит для установки в левом нижнем углу, для его крепления используется один винт. Такая установка компонентов разрешает без проблем подключить джек 2.1 мм к Arduino. Датчик движения ставят так чтобы была возможность его снять, потому что он мешает подключить кабель USB к плате.

Шаг шестой. Программирование.
Как указано в начале статьи часы должны не только отображать время и дату, но и таймер с будильников. На шилде имеется 5 кнопок, которые можно запрограммировать. Использоваться они будут для различных режимов работы часов. Зуммер будет отрабатывать при нажатии каждой кнопки, а при работе будильника он подаст несколько сигналов.

Скетч для Arduino.
За основу автором взят скетч от Adafruit, его разработали для часов реального времени. В нём используют библиотеку RTClib. Далее, автор добавил кусок кода для LCD шилда от DFRobot (опция управления кнопками). И кусок кода добавил от себя исключительно под этот проект. Финальную версию кода можно скачать под статьёй. Ниже представлены фото с разными режимами работы часов.

Шаг седьмой. Функции кнопок.
Как видно на фото ниже каждая кнопка на шилде подписана, пять из них были запрограммированы так:
- Первая кнопка (SELECT) - это меню. Кнопка отображает листание имеющихся функций (таймер, будильник).
- Вторая кнопка (LEFT) - эта кнопка отвечает за выбор функции. Дополнительная функция кнопки увеличение значения на 10 когда вводятся часы и минуты.
- Третья и четвёртая кнопки (UP, DOWN) - используются для увеличения и уменьшения значений часов и минут при настройке будильника и таймера. Дополнительная функция кнопок для переключения времени суток AM и PM.
- Пятая кнопка (RIGHT) - это кнопка ввода. Используется для принятия значения (настроенное время таймера, часов).
- Шестая кнопка (RST) - кнопка используется для перезагрузки Arduino.

В статье вы познакомитесь с отличным модулем часов реального времени на батарейке.

С помощью этого модуля можно отслеживать время в ваших проектах на Arduino даже в случае перепрограммирования или отключения питания. Это один из необходимых элементов для проектов будильников, сигнализаций, снятия показаний с датчиков в режиме реального времени. Одна из самых популярных моделей модуля часов реального времени - DS1307. Именно на нем мы и остановимся. Модуль отлично сочетается с микроконтроллерами Arduino, на которых питание логики равно 5 В.

Особенности модуля от компании-производителя Adafruit (китайцы предлагают аналогичные варианты раза в три-четыре дешевле):

  • Все включено: чип, обвязка, батарейка;
  • Легко собирается и прост в использовании;
  • Устанавливается на любую макетную плату или подключается напрямую с помощью проводов;
  • Есть отличные библиотеки и скетчи-примеры;
  • Два отверстия для монтажа;
  • Продолжительность работы - около пяти лет!

Модуль часов реального времени может быть уже распаянным, а может продаваться в виде отдельных комплектующих, пайка которых займет около 15-ти минут, не более.

Что такое часы реального времени?

Часы реально времени - это... часы. Модуль работает от автономного питания - батарейки и продолжает вести отсчет времени, даже если на вашем проекте на Arduino пропало питание. Используя модуль реального времени, вы можете отслеживать время, даже если вы захотите внести изменения в ваш скетч и перепрограммировать микроконтроллер.

На большинстве микроконтроллеров, в том числе и Arduino, есть встроенный счетчик временни, который называется millis(). Есть и встроенные в чип таймеры, которые могут отслеживать более длительные промежутки времени (минуты или дни). Так зачем же вам отдельным модуль часов? Основная проблема в том, что millis() отслеживает время только с момента подачи питания на Arduino. То есть, как только вы отключили плату, таймер сбрасывается в 0. Вша Arduino не знает, что сейчас, например, четверг или 8-е марта. Все, чего вы можете добиться от встроенного счетчика - это "Прошло 14000 миллисекунд с момента последнего включения".

Например вы создали программу и хотите вести отсчет времени с этого момента. Если вы отключите питание микроконтроллера, счетчик времени собьется. Примерно так, как это происходит с дешевыми китайскими часами: когда садится батарейка, они начинают мигать с показанием 12:00.

В некоторых проектах Arduino вам понадобится надежный контроль времени без прерываний. Именно в таких случаях используется внешний модуль часов реального времени. Чип, который используется в подобных часах, отслеживает года и даже знает сколько дней в месяце (единственно, что обычно не учитывается - это переход на летнее и зимнее время, так как подобные переводы разные в разных частях мира).

На рисунке ниже показана материнская плата компьютера с часами реального времени DS1387. В часах используется литиевая батарея, поэтому они разрослись в размерах.

Мы рассмотрим пример использования часов реального времени DS1307. Это дешевый, легкий в использовании модуль, который работает несколько лет от небольшой батарейки.

Пока батарейка в самом модуле не исчерпает свой заряд, DS1307 будет вести отсчет времени, даже если Arduino отключен от питания или перепрограммируется.

Узлы, из которых состоит модуль часов реального времени

Детали модуля часов реального времени DS1307 от компании Adafruit
Рисунок Обозначение Описание Производитель Количество
IC2 Чип часов реального времени DS1307 1
Q1 32.768 КГц, 12.5 пФ кристалл Generic 1
R1, R2 1/4 Вт 5% 2.2 КОм резистор Красный, Красный, Красный, Золотой Generic 2
C1 0.1 мкФ керамический конденсатор Generic 1
Рельса на 5 контактов (1x5) Generic 1
Батарейка 12 мм 3 В литиевая батарейка CR1220 1
12mm coin cell holder Keystone 3001 1
Плата Adafruit Industries 1

Сборка модуля часов реального времени

Сборка часов реального времени DS1307 компании Adafruit
Фото Пояснения

Подготовьтесь к сборке. Проверьте наличие всех необходимых деталей и инструментов. Установите монтажную плату в тисках.

Нанесите немного припоя на отрицательный контакт батареи.

Установите два резистора 2.2 КОм и керамический конденсатор. Как именно вы их расположите - неважно. Полярность не имеет значения. После этого установите кристалл (также симметрично), держатель (холдер) для батарейки и чип часов реального времени. Чип модуля реального времени надо установить таким образом, чтобы отметка (паз) на чипе располагалась в соответствии с обозначением на монтажной плате. Внимательно посмотрите на фото слева, там чип установлен верно.


Чтобы холдер для батарейки не выпадал, лучше его припаять сверху. После этого переверните плату и и припаяйте оставшиеся контакты.

Удалите остатки контактов от резисторов, кристалла и конденсатора.

Если вы хотите использовать контакты для установки модуля на беспаечную монтажную плату, установите рельсу контактов на макетку, модуль часов реального времени сверху и припаяйте контакты.

Установите батарейку. Плоская часть батареи должна быть сверху. В среднем батарейка будет служить около 5 лет. Даже если батарейка села, не оставляйте слот для нее пустым.

Библиотека Arduino для работы с DS1307

DS1307 легко подключается к любому микроконтроллеру с питанием логики 5 В и возможностью I2C подключения. Мы рассмотрим подключение и использование этого модуля с Arduino .

Будем использовать библиотеку RTClib для получения и настройки показаний с DS1307. Если у вас есть вопросы по учтановке дополнительных библиотек Arduino - ознакомьтесь с этой инструкцией .

В статье рассмотрен пример часов реального времени от Adafruit, но вы можете с тем же успехом использовать китайские аналоги. Принцип работы и подключения не отличается.

  • КУПИТЬ Arduino Uno R3 ;
  • КУПИТЬ Breadboard ;
  • КУПИТЬ модуль часов реального времени DS1307 ;

На часах реального премени 5 пинов: 5V, GND, SCL, SDA и SQW.

  • 5V используется для питания чипа модуля часов реального времени, когда вы делаете к нему запрос для получения данных о времени. Если сигнал 5 В не поступает, чип переходит в "спящий" режим.
  • GND - общая земля. Обязательно подключается в схему.
  • SCL - контакт i2c часов - необходим для обмена данными с часами реального времени.
  • SDA - контакт, по которому через i2c передаются данные с часов реального времени.
  • SQW дает возможность настроить вывод данных в виде square-wave. В большинстве случаев этот контакт не используется.

Если вы настроили аналоговый пин 3 (цифровой 17) в режим OUTPUT и HIGH, а аналоговый пин 2 (цифровой 16) в режим OUTPUT и LOW, вы можете запитывать часы реального времени непосредственно от этих контактов!

Подключите аналоговый пин 4 на Arduino к SDA. Аналоговый пин 5 на Arduino подключите к SCL.


Скетч для Arduino

Проверка часов реального времени

Первый скетч, который стоит запустить - это программа, которая будет считывать данные с модуля часов реального времени раз в секунду.

Для начала давайте посмотрим, что произойдет, если мы извлечем батарейку и заменим ее на другую, пока Arduino не подключен к USB. Подождите 3 секунды и извлеките батарейку. В результате чип на часах реального времени перезагрузится. После этого вставьте код, который приведен ниже (код также можно выгрузить в меню Examples→RTClib→ds1307 в Arduino IDE) и загрузите его на Arduino.

Вам также понадобится библиотека OneWire.h, скачть ее можно

.

// функции даты и времени с использованием часов реального времени DS1307, подключенные по I2C. В скетче используется библиотека Wire lib

#include <Wire.h>

#include "RTClib.h"

Serial.begin(57600);

if (! RTC.isrunning()) {

Serial.println("RTC is NOT running!");

// RTC.adjust(DateTime(__DATE__, __TIME__));

DateTime now = RTC.now();

Serial.print("/");

Serial.print("/");

Serial.print(now.day(), DEC);

Serial.print(" ");

Serial.print(":");

Serial.print(":");

Serial.println();

Serial.print(now.unixtime());

Serial.print("s = ");

Serial.println("d");

// рассчитываем дату: 7 дней и 30 секунд

DateTime future (now.unixtime() + 7 * 86400L + 30);

Serial.print(" now + 7d + 30s: ");

Serial.print(future.year(), DEC);

Serial.print("/");

Serial.print(future.month(), DEC);

Serial.print("/");

Serial.print(future.day(), DEC);

Serial.print(" ");

Serial.print(future.hour(), DEC);

Serial.print(":");

Serial.print(future.minute(), DEC);

Serial.print(":");

Serial.print(future.second(), DEC);

Serial.println();

Serial.println();

Теперь откройте окно серийного монитора и убедитесь, что скорость передачи данных установлена корректно: на 57600 bps.

В результате вы должны увидеть в окне серийного монитора примерно следующее:


Если в часах реального времени пропадет питание, отобразится 0:0:0. Секунды отсчитываться перестанут. После настройки времени, пойдет новый отсчет. Именно по этой причине извлекать батарейку во время работы модуля часов реального времени нельзя.

Настройка времени на модуле часов

В этом же скетче раскомментируйте строку, которая начинается с RTC.adjust:

// строка ниже используется для настройки даты и времени часов

RTC.adjust(DateTime(__DATE__, __TIME__));

Процесс настройки даты и времени реализован очень элегантно. В эту строку попадают данные с вашего счетчика на персональном компьютере (в момент компилляции кода). Эти данные используются для прошивки вашего модуля часов реального времени. То есть, если время на вашем ПК настроено неверно, рекомендуем сначала исправить этот баг, а потом переходить к прошивке модуля часов для Arduino.

После настройки, откройте серийный монитор и убедитесь, что часы настроены корректно:


Все. С этого момента и на протяжении ближайших нескольких лет настраивать DS1307 не придется.

Считывание показаний времени с DS1307

После настройки часов реального времени DS1307, может отправлять к ним запросы. Давайте рассмотрим часть скетча, в которой реализованы эти запросы.

DateTime now = RTC.now();

Serial.print(now.year(), DEC);

Serial.print("/");

Serial.print(now.month(), DEC);

Serial.print("/");

Serial.print(now.day(), DEC);

Serial.print(" ");

Serial.print(now.hour(), DEC);

Serial.print(":");

Serial.print(now.minute(), DEC);

Serial.print(":");

Serial.print(now.second(), DEC);

Serial.println();

По сути существует один вариант для получения времени с использованием часов реального времени. Для этого используется функция now(), которая возвращает объект DateTime. В этом объекте содержаться данные про год, месяц, день, час, минуту и секунду.

Есть ряд библиотек для часов реального времени, в которых предусмотрены функции вроде RTC.year() и RTC.hour(). Эти функции вытягивают отдельно год и час. Но их использование сопряжено с рядом проблем: если вы сделаете запрос на вывод минут в момент времени, например, 3:14:59, то есть, прямо перед тем как показания минут должны приравняться к "15" (3:15:00), полученные данные будут равны 3:14:00 - то есть, вы потеряете одну минуту.

В общем, использование отдельных функций для вызова часа или года обосновано только в том случае, когда точность контроля времени с разбросом в одну минуту/года для вашего проекта не критична (как правило, это в тех случаях, когда показания снимаются редко - раз в сутки, раз в неделю). В любом случае, если вы хотите избежать погрешностей в показаниях, используйте now(), а уже из полученных данных тяните необходимые вам показания (минуты, года и т.п.).

Есть еще один формат данных, которые мы можем подучить - количество секунд от полуночи, 1-го января 1970 года. Для этого используется функция unixtime ():

Serial.print(" since 1970 = ");

Serial.print(now.unixtime());

Serial.print("s = ");

Serial.print(now.unixtime() / 86400L);

Serial.println("d");

Так как в одном дне 60*60*24 = 86400 секунд, можно перевести полученное значение в дни и года. Очень удобный вариант, если вам надо отследить, сколько времени прошло с момента последнего запроса. Например, если прошло 5 минут с момента последнего последнего обращения Arduino к часам реального времени DS1307, значение, которое вернет функция unixtime() будет больше на 300.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Понадобилось как-то сделать большие настенные часы с автоматической яркостью.

Такие часы отлично подойдут для больших помещений, например холл офиса или большая квартира.

Сделать такие большие настенные часы не представляет серьёзных сложностей при помощи данной инструкции.


Для оценки размера часов можно принять тот факт, что один сегмент часов будет размером с бумагу формата А4, что позволит легко использовать рамки для фотографий соответствующего размера.

Шаг 1. Составные части больших настенных часов.

Провода, припой, паяльник, лента светодиодная Arduino Nano DC-DC преобразователь LM2596
4 метра светодиодной ленты WS2811 датчик света часы реального времени DS3231
микропереключатели

Что я использовал для этого проекта:

Шаг 8. Программируем часы.

Немного повозившись, мне удалось получить часы, полностью удовлетворяющие моим потребностям. Я уверен что вам удастся сделать лучше моего.

Код хорошо прокоментирован и вам не составит труда в нём разобраться, сообщения отладки так-же прокоментированы очень хорошо.

Если вам нужно поменять используемый цвет настенных часов вам необходимо поменять переменную на строчке 22 (int ledColor = 0x0000FF; // Color used (in hex) ). Вы можете найти список цветов и их коды в hex на странице: https://github.com/FastLED/FastLED/wiki/Pixel-refe…

Если у вас возникли проблемы при загрузке, используйте зеркало:http://bit.ly/1Qjtgg0

Мой итоговый скетч можно скачать .

Шаг 9. Делаем цифры используя полистирол.

Основание резака Рабочий орган резака Общий вид резака
Результат работы резака

Разрежьте каждый сегмент в шаблоне, напечатаетанного в начале.
Полистирол можно разрезать острым ножом, что довольно трудно, либо нехитрым приспособлением из нихромовой проволоки или гитарной струны и нескольких отрезков ОСБ-плиты.

Вы можете видеть, как это сделал я в изображениях выше.

Для того, чтобы запитать резак я использовал 12v блок питания.

В результате отрезаний должны получиться четыре сегмента для больших часов, один из которых показан на фото.

Шаг 10. Приклеиваем цифры и закрываем всё рассеивателем. Итоговые большие настенные часы.

Свечение днем Свечение ночью

После вырезания всех четырех цифр и точек настенных часов приклеиваем их всех на картон вместе со светодиодными лентами (для упрощения процесса я использовал двустороннюю клейкую ленту)

Для того, чтобы рассеять жесткий светодиодный свет я использовал два листа бумаги поверх полистироловых цифр. Для удобства и эстетичности я использовал бумагу размера А2, сложенную вдвое.

После завершения всех этих шагов я поместил получившуюся сборку больших настенных часов в соответствующую им большую фоторамку.

Эти часы получились очень эффектными и притягивающими взгляд. Я думаю что такие большие настенные часы отлично украсят множество помещений.

Вконтакте

После создания множества прототипов Arduino на макетной плате, я решил сделать что-то полезное, то, что можно использовать дома. А что может быть полезнее, чем светящиеся часы, которые почему-то с 2010 года перестали выпускаться? Начал я сборку цифровых часов с поиска необходимых деталей. Одним из критериев, который помог быстрее насобирать необходимые компоненты, стала доступность деталей в местных магазинах и от производителей из Китая, Малайзии.

Arduino часы реального времени (RTC) на 7-сегментных индикаторах

При сборке часов, появилось несколько вариантов настройки на них точного времени. Первый: устанавливать время на Arduino , держа его все время под питанием. Но такой метод не очень целесообразный, так как каждый раз, когда понадобиться установить время, надо будет пустить питание на Arduino.

Вторым вариантом была идея подключения 7-сегментных LED -индикаторов к GPS модулю . Поскольку GPS сигнал дает очень точное время, этот вариант должен был решить проблему, и не пришлось бы настраивать часы каждый раз при их включении. Я взял свой карманный навигатор Garmin GPS 60 C, подключил его в последовательный разъем к Arduino и загрузил несколько библиотек GPS, получив таким образом сигнал очень точного времени.

Проблема GPS метода оказалась в том, что, поскольку я живу центре города, то каменные джунгли непроглядными высотками окружают мой дом, и понадобилось бы поставить внешнюю GPS антенну снаружи окна, чтобы получить GPS сигнал с чистого неба. Без спутникового покрытия, никакое устройство GPS не в состоянии получить сигнал с синхронизацией по времени. Или часы должны быть на окне, либо надо было вынести GPS-антенну и проложить 7-метровый кабель до них.

Третий способ настройки часов оказался наилучшим. Заключается он в работе Arduino совместно с DS1307 часами реального времени (RTC). Питание на них идет от таблеточной 3-вольтовой батарейки, которая сохраняет настройки, когда устройство выключено и во время отсоединения микроконтроллера.

Я пошел в местный «электронный рай», расположенный в центре города, чтобы испытать свою удачу в поиске необходимых компонентов. К моему удивлению, там я нашел все необходимые детали для сборки цифровых часов.

Необходимыми деталями являются:

  1. плата Arduino для макетирования и загрузки скетча в микроконтроллер;
  2. микроконтроллер ATmega328P для работы часов;
  3. четыре красных 7-сегментных LED-индикатора (или другие, более холодного цвета, которые найдете на местном рынке);
  4. часы реального времени DS1307;
  5. кварцевый резонатор на 32,768 кГц;
  6. держатель для батарейки таблеточного размера CR2025 или CR2032;
  7. четыре микросхемы 74HC595 сдвигающего регистра для управления 7-сегментными LED-индикаторами;
  8. резисторы 220 Ом по 0.25 Вт;
  9. однорядные штыревые разъёмы;
  10. гнезда для интегральных микросхем (IC);
  11. соединительные провода.

Если нет навыков в изготовлении печатных плат, то рекомендую использовать паечную макетную плату (текстолитовая пластинка с множеством отверстий для закрепления на ней пайкой компонентов, которую ошибочно называют монтажной платой ) и припаять на неё все IC гнезда микросхем и штыревые разъёмы. Благодаря таким быстроразъемным контактам все 7-сегментные LED-индикаторы и интегральные микросхемы могут быть легко заменены при необходимости.

Поскольку размер макетной платы весьма ограничен, то удалось разместить на ней только 35-миллиметровые LED-индикаторы, ведь должно было ещё остаться место для держателя таблеточной батарейки. Хотелось бы поставить гораздо большие 7-сегментные индикаторы, но более крупным из них надо повышенное напряжение, свыше 5 В, и уже потребовалось таки усложнить схему двойными цепями питания. Иметь дело со стабилизатором на два выходных напряжения не хочется, лучше сосредоточиться на более простой версии цифровых часов.

Разделительные керамические конденсаторы 100 нФ на ножке питания Vcc каждого регистра 74HC595 добавлены, чтобы предотвратить любые проблемы с низкочастотными помехами.

Собираемые цифровые часы используют только 5 пинов Arduino:

  • 3 цифровых выхода для сдвигающих регистров 74HC595;
  • 2 аналоговых выхода для часов реального времени, подключенных с использованием соединения I2C.

Преимущество собираемых цифровых часов на Arduino в сравнении с заводскими в том, что к ним можно легко добавить любые функции, какие только могут стать полезны.

Вот некоторые идеи доработки часов:

  1. Чередование отображения на индикаторах часов/минут и минут/секунд;
  2. Проигрывание мелодии каждый час;
  3. Установка датчика LM35, и использование часов в качестве термометра;
  4. Функция утреннего будильника;
  5. Даже управление другими электрическими приборами с помощью электромеханического реле, включающегося в соответствии с определёнными по времени событиями или показаниями подключенных датчиков.

Так как четыре индикатора довольно большие и яркие, их можно использовать также для отображения буквенной информации.

После того, как я припаял первую цифру 7 сегментного LED-индикатора с общим катодом к сдвигающему регистру 74HC595, открылась первая проблема. Я использовал только один резистор 220 Ом, соединенный с общим катодом LED-индикатора, чтобы сберечь резисторы, и обнаружил, что когда включается число 8, то все сегменты загораются очень тускло. Это нормально для прототипа, но не годится для действующих цифровых часов. Было бы очень неприятно иметь часы с по-разному светящимися цифрами. Так что пришлось разорвать отдельные провода и раздобыть побольше резисторов на 220 Ом, чтобы подключить их к каждому из семи сегментов LED-индикатора.

Вторая проблема была в том, что я забыл выделить место для двух светодиодов диаметром 5 мм, в качестве мигающего двоеточия индикатора секунд. А индикатор третьей цифры уже был припаян.

Поскольку слишком много труда уходит на пайку одного индикатора, вместе с присоединением всех резисторов к проводам, я решил сделать выносную платку с двумя светодиодами в качестве индикаторов секунд. Я найду способ установки двух точек между часовыми и минутными цифрами! На фотографии внизу, я просто снимаю по светодиоду на 13 выводе мигания с интервалом в 500 мс.

  • Есть коды .
  • Окончательный скетч

Вот несколько фотографий собранного, работающего устройства. Теперь мне всего лишь нужно что-то вроде акрила, чтобы закрепить макетную плату и скрыть часы Arduino в общем корпусе.

Эти часы запитаны от выносной платы Arduino в версии с FTDI кабелем и гнездом DC постоянного тока.

Сборка Arduino часов завершена после установки DHT11 датчика влажности и температуры.

Самодельный датчик температуры и влажности DHT11 и DHT22 – подключение к Arduino GPS часы на Arduino

Во многих проектах Ардуино требуется отслеживать и фиксировать время наступления тех или иных событий. Модуль часов реального времени, оснащенный дополнительной батарей, позволяет хранить текущую дату, не завися от наличия питания на самом устройстве. В этой статье мы поговорим о наиболее часто встречающихся модулях RTC DS1307, DS1302, DS3231, которые можно использовать с платой Arduino.

Модуль часов представляет собой небольшую плату, содержащей, как правило, одну из микросхем DS1307, DS1302, DS3231.Кроме этого, на плате практически можно найти механизм установки батарейки питания. Такие платы часто применяется для учета времени, даты, дня недели и других хронометрических параметров. Модули работают от автономного питания – батареек, аккумуляторов, и продолжают проводить отсчет, даже если на Ардуино отключилось питание. Наиболее распространенными моделями часов являются DS1302, DS1307, DS3231. Они основаны на подключаемом к Arduino модуле RTC (часы реального времени).

Часы ведут отсчет в единицах, которые удобны обычному человеку – минуты, часы, дни недели и другие, в отличие от обычных счетчиков и тактовых генераторов, которые считывают «тики». В Ардуино имеется специальная функция millis(), которая также может считывать различные временные интервалы. Но основным недостатком этой функции является сбрасывание в ноль при включении таймера. С ее помощью можно считать только время, установить дату или день недели невозможно. Для решения этой проблемы и используются модули часов реального времени.

Электронная схема включает в себя микросхему, источник питания, кварцевый резонатор и резисторы. Кварцевый резонатор работает на частоте 32768 Гц, которая является удобной для обычного двоичного счетчика. В схеме DS3231 имеется встроенный кварц и термостабилизация, которые позволяют получить значения высокой точности.

Сравнение популярных модулей RTC DS1302, DS1307, DS3231

В этой таблице мы привели список наиболее популярных модулей и их основные характеристики.

Название Частота Точность Поддерживаемые протоколы
DS1307 1 Гц, 4.096 кГц, 8.192 кГц, 32.768 кГц Зависит от кварца – обычно значение достигает 2,5 секунды в сутки, добиться точности выше 1 секунды в сутки невозможно. Также точность зависит от температуры. I2C
DS1302 32.768 кГц 5 секунд в сутки I2C, SPI
DS3231 Два выхода – первый на 32.768 кГц, второй – программируемый от 1 Гц до 8.192 кГц ±2 ppm при температурах от 0С до 40С.

±3,5 ppm при температурах от -40С до 85С.

Точность измерения температуры – ±3С

I2C

Модуль DS1307

DS1307 – это модуль, который используется для отсчета времени. Он собран на основе микросхемы DS1307ZN, питание поступает от литиевой батарейки для реализации автономной работы в течение длительного промежутка времени. Батарея на плате крепится на обратной стороне. На модуле имеется микросхема AT24C32 – это энергонезависимая память EEPROM на 32 Кбайт. Обе микросхемы связаны между собой шиной I2C. DS1307 обладает низким энергопотреблением и содержит часы и календарь по 2100 год.

Модуль обладает следующими параметрами:

  • Питание – 5В;
  • Диапазон рабочих температур от -40С до 85С;
  • 56 байт памяти;
  • Литиевая батарейка LIR2032;
  • Реализует 12-ти и 24-х часовые режимы;
  • Поддержка интерфейса I2C.

Модуль оправдано использовать в случаях, когда данные считываются довольно редко, с интервалом в неделю и более. Это позволяет экономить на питании, так как при бесперебойном использовании придется больше тратить напряжения, даже при наличии батарейки. Наличие памяти позволяет регистрировать различные параметры (например, измерение температуры) и считывать полученную информацию из модуля.

Взаимодействие с другими устройствами и обмен с ними информацией производится с помощью интерфейса I2C с контактов SCL и SDA. В схеме установлены резисторы, которые позволяют обеспечивать необходимый уровень сигнала. Также на плате имеется специальное место для крепления датчика температуры DS18B20.Контакты распределены в 2 группы, шаг 2,54 мм. В первой группе контактов находятся следующие выводы:

  • DS – вывод для датчика DS18B20;
  • SCL – линия тактирования;
  • SDA – линия данных;
  • VCC – 5В;

Во второй группе контактов находятся:

  • SQ – 1 МГц;
  • BAT – вход для литиевой батареи.

Для подключения к плате Ардуино нужны сама плата (в данном случае рассматривается Arduino Uno), модуль часов реального времени RTC DS1307, провода и USB кабель.

Чтобы подключить контроллер к Ардуино, используются 4 пина – VCC, земля, SCL, SDA.. VCC с часов подключается к 5В на Ардуино, земля с часов – к земле с Ардуино, SDA – А4, SCL – А5.

Для начала работы с модулем часов нужно установить библиотеки DS1307RTC, TimeLib и Wire. Можно использовать для работы и RTCLib.

Проверка RTC модуля

При запуске первого кода программа будет считывать данные с модуля раз в секунду. Сначала можно посмотреть, как поведет себя программа, если достать из модуля батарейку и заменить на другую, пока плата Ардуино не присоединена к компьютеру. Нужно подождать несколько секунд и вытащить батарею, в итоге часы перезагрузятся. Затем нужно выбрать пример в меню Examples→RTClib→ds1307. Важно правильно поставить скорость передачи на 57600 bps.

При открытии окна серийного монитора должны появиться следующие строки:

Будет показывать время 0:0:0. Это связано с тем, что в часах пропадает питание, и отсчет времени прекратится. По этой причине нельзя вытаскивать батарею во время работы модуля.

Чтобы провести настройку времени на модуле, нужно в скетче найти строку

RTC.adjust(DateTime(__DATE__, __TIME__));

В этой строке будут находиться данные с компьютера, которые используются ля прошивки модуля часов реального времени. Для корректной работы нужно сначала проверить правильность даты и времени на компьютере, и только потом начинать прошивать модуль часов. После настройки в мониторе отобразятся следующие данные:

Настройка произведена корректно и дополнительно перенастраивать часы реального времени не придется.

Считывание времени. Как только модуль настроен, можно отправлять запросы на получение времени. Для этого используется функция now(), возвращающая объект DateTime, который содержит информацию о времени и дате. Существует ряд библиотек, которые используются для считывания времени. Например, RTC.year() и RTC.hour() – они отдельно получают информацию о годе и часе. При работе с ними может возникнуть проблема: например, запрос на вывод времени будет сделан в 1:19:59. Прежде чем показать время 1:20:00, часы выведут время 1:19:00, то есть, по сути, будет потеряна одна минута. Поэтому эти библиотеки целесообразно использовать в случаях, когда считывание происходит нечасто – раз в несколько дней. Существуют и другие функции для вызова времени, но если нужно уменьшить или избежать погрешностей, лучше использовать now() и из нее уже вытаскивать необходимые показания.

Пример проекта с i2C модулем часов и дисплеем

Проект представляет собой обычные часы, на индикатор будет выведено точное время, а двоеточие между цифрами будет мигать с интервалом раз в одну секунду. Для реализации проекта потребуются плата Arduino Uno, цифровой индикатор, часы реального времени (в данном случае вышеописанный модуль ds1307), шилд для подключения (в данном случае используется Troyka Shield), батарейка для часов и провода.

В проекте используется простой четырехразрядный индикатор на микросхеме TM1637. Устройство обладает двухпроводным интерфейсом и обеспечивает 8 уровней яркости монитора. Используется только для показа времени в формате часы:минуты. Индикатор прост в использовании и легко подключается. Его выгодно применять для проектов, когда не требуется поминутная или почасовая проверка данных. Для получения более полной информации о времени и дате используются жидкокристаллические мониторы.

Модуль часов подключается к контактам SCL/SDA, которые относятся к шине I2C. Также нужно подключить землю и питание. К Ардуино подключается так же, как описан выше: SDA – A4, SCL – A5, земля с модуля к земле с Ардуино, VCC -5V.

Индикатор подключается просто – выводы с него CLK и DIO подключаются к любым цифровым пинам на плате.

Скетч. Для написания кода используется функция setup, которая позволяет инициализировать часы и индикатор, записать время компиляции. Вывод времени на экран будет выполнен с помощью loop.

#include #include "TM1637.h" #include "DS1307.h" //нужно включить все необходимые библиотеки для работы с часами и дисплеем. char compileTime = __TIME__; //время компиляции. #define DISPLAY_CLK_PIN 10 #define DISPLAY_DIO_PIN 11 //номера с выходов Ардуино, к которым присоединяется экран; void setup() { display.set(); display.init(); //подключение и настройка экрана. clock.begin(); //включение часов. byte hour = getInt(compileTime, 0); byte minute = getInt(compileTime, 2); byte second = getInt(compileTime, 4); //получение времени. clock.fillByHMS(hour, minute, second); //подготовка для записывания в модуль времени. clock.setTime(); //происходит запись полученной информации во внутреннюю память, начало считывания времени. } void loop() { int8_t timeDisp; //отображение на каждом из четырех разрядов. clock.getTime();//запрос на получение времени. timeDisp = clock.hour / 10; timeDisp = clock.hour % 10; timeDisp = clock.minute / 10; timeDisp = clock.minute % 10; //различные операции для получения десятков, единиц часов, минут и так далее. display.display(timeDisp); //вывод времени на индикатор display.point(clock.second % 2 ? POINT_ON: POINT_OFF);//включение и выключение двоеточия через секунду. } char getInt(const char* string, int startIndex) { return int(string - "0") * 10 + int(string) - "0"; //действия для корректной записи времени в двухзначное целое число. В ином случае на экране будет отображена просто пара символов. }

После этого скетч нужно загрузить и на мониторе будет показано время.

Программу можно немного модернизировать. При отключении питания выше написанный скетч приведет к тому, что после включения на дисплее будет указано время, которое было установлено при компиляции. В функции setup каждый раз будет рассчитываться время, которое прошло с 00:00:00 до начала компиляции. Этот хэш будет сравниваться с тем, что хранятся в EEPROM, которые сохраняются при отключении питания.

Для записи и чтения времени в энергонезависимую память или из нее нужно добавить функции EEPROMWriteInt и EEPROMReadInt. Они нужны для проверки совпадения/несовпадения хэша с хэшем, записанным в EEPROM.

Можно усовершенствовать проект. Если использовать жидкокристаллический монитор, можно сделать проект, который будет отображать дату и время на экране. Подключение всех элементов показано на рисунке.

В результате в коде нужно будет указать новую библиотеку (для жидкокристаллических экранов это LiquidCrystal), и добавить в функцию loop() строки для получения даты.

Алгоритм работы следующий:

  • Подключение всех компонентов;
  • Проверка – на экране монитора должны меняться ежесекундно время и дата. Если на экране указано неправильное время, нужно добавить в скетч функцию RTC.write (tmElements_t tm). Проблемы с неправильно указанным временем связаны с тем, что модуль часов сбрасывает дату и время на 00:00:00 01/01/2000 при выключении.
  • Функция write позволяет получить дату и время с компьютера, после чего на экране будут указаны верные параметры.

Заключение

Модули часов используются во многих проектах. Они нужны для систем регистрации данных, при создании таймеров и управляющих устройств, которые работают по заданному расписанию, в бытовых приборах. С помощью широко распространенных и дешевых модулей вы можете создать такие проекты как будильник или регистратор данных с сенсоров, записывая информацию на SD-карту или показывая время на экране дисплея. В этой статье мы рассмотрели типичные сценарии использования и варианты подключения наиболее популярных видов модулей.