Регулятор напряжения из блока питания компьютера. Блок питания-зарядное из ATX переделанного в AT

Регулятор напряжения из блока питания компьютера. Блок питания-зарядное из ATX переделанного в AT
Регулятор напряжения из блока питания компьютера. Блок питания-зарядное из ATX переделанного в AT

Браслеты из кожи, выполненные своими руками, еще один вид украшения, который занимает популярную позицию в современной женской и мужской моде. О примерах и идеях таких браслетов, поговорим сегодня. В мастер-классе мы соберем стильный браслет из тонких кожаных шнурков и декоративных соединительных колец.

Браслеты из кожи очень разнообразны в своей сборке. Мастера используют в работе и тонкую и плотную кожу; кожаные шнуры; полоски; лоскуты и т.д. Кожаные элементы могут играть главную роль в украшении, выступая единственной основой или каким-либо отдельным декоративным фрагментом, украшенным бусинами, бисером или подвесками. Рассмотрим несколько примеров браслетов из кожи.

Браслеты из кожи в виде одной или нескольких полосок или шнуров, украшенные декоративным замком, бусинами-разделителями или подвеской:



Плетеные браслеты из кожаных шнуров, украшенные бусинами.


Браслеты из кожи с нанесенными или выбитыми надписями или узорами.




Фигурные браслеты из кожи, с помощью резки.

Мужские браслеты из кожи украшенные бусинами-заклепками или металлическими звеньями.




Браслеты из кожи, украшенные с помощью вышивки.



Объемные кожаные браслеты с текстурной фактурой, украшенные элементами фурнитуры для бижутерии.



Браслеты из тонкой кожи в виде присборенной гармошки.


Браслет из плотной кожи, с декоративным объемным элементом в виде кожаного цветка, с эффектом тонирования.


Браслет из кожи, на металлической заготовке.


Мастер-класс браслета из кожаных шнуров и декоративных соединительных колец.

Фурнитура:

Кожаный шнур 1 метр

Концевики-зажимы шт

Декоративные соединительные кольца 3 шт

Замок-карабин 1 шт

Малые соединительные кольца 2шт

Инструменты: Ножницы, плоскогубцы.


Сборка:

Нарезаем 6 кожаных шнуров, помещаем их в концевик-зажим и зажимаем зубцы концевика плоскогубцами. Для надежности, перед зажатием можно нанести в концевик несколько капель клея.


Раскладываем шнуры на рабочем столе так, как показано на фото ниже. Отступаем от края браслета примерно 5 см. В центральные два шнура проводим декоративное кольцо.


Под кольцом, на центральные шнуры накладываем боковые шнуры, как бы заплетая простую косу, а затем выводим центральные два шнура обратно вверх, чтобы они находились поверх декоративного колечка.


Снова проводим через центральные шнуры декоративное кольцо.


Плетем косу под кольцом и снова выводим центральные шнуры наверх.


Повторяем действия еще один раз.


Фиксируем оставшийся край браслета как в начале, с помощью концевика-зажима. Добавляем замок карабин через малые соединительные колечки.


Браслет готов!


Анализ информации по переделке компьютерных импульсных блоков питания (далее ИБП), размещенной в Интернете, натолкнул на мысли переделать ИБП для радиолюбительских целей. Ввиду большого разнообразия вариантов исполнения блоков питания пришлось разрабатывать свою методику переделки.

Однажды попались мне два внешне совершенно одинаковых ИБП, но на плате у одного из них изготовителем не были уставлены с два десятка деталей! Вообще, было переделано больше десятка ИБП. Переделке поддались ИБП с ШИМ-контроллером TL494 (или его соответствующие аналоги).

Условно ИБП можно разделить на две категории:
— ИБП раннего выпуска (без выводов VSB и PS-ON), которые не запускаются без нагрузки по шине +5 В (часто встречал случаи нагрузки этой шины резистором 5 Ом/10 Вт, а это дополнительный источник тепла в корпусе ИБП), стабилизация напряжения -только по шине +5 В, запускаются сразу после подачи сетевого напряжения;
— ИБП позднего выпуска, имеют выводы VSB, PS-ON, PG, +3,3 В, высокий уровень стабилизации по шине +12 В и запускаются только после замыкания вывода PS-ON на корпус (GND).

Итак, после вскрытия ИБП первым делом необходимо очистить его от пыли. Затем снять вентилятор охлаждения и смазать его машинным маслом, для этого отклеивают фирменную наклейку и выковыривают резиновую пробку.

Разъемы для подключения сетевого шнура и монитора, а также переключатель 115/230 В также снимаем - на этом месте будут размещены амперметр и резистор регулировки выходного напряжения. Сетевой шнур следует припаять непосредственно к плате. Электролитические конденсаторы на шине +12 В заменяем на 25-вольтовые.

Подпаиваем перменный резистор

На печатной плате к выводу 1 ШИМ-контроллера TL494 (рис.1 а или б - в зависимости от варианта исполнения ИБП) и общему проводу подпаиваем переменный резистор Rрег. сопротивлением 47 кОм. Уменьшая сопротивление резистора Rper, пытаемся поднять напряжение шины +12 В, но при напряжении 12,5 - 13В должна срабатывать защита ИБП, и он должен выключаться. За это отвечает узел защиты от превышения выходного напряжения, начинающийся обычно со стабилитрона (рис.2а или б - в зависимости от варианта исполнения ИБП).

Его необходимо отыскать на плате и выпаять на время экспериментов. Если стабилитрон стоит в другом месте схемы, то найти его можно, измеряя падение напряжения на нем (около 4 -5 или 10-12 В).

Далее запускаем ИБП и, уменьшая сопротивление резистора Rper. поднимаем напряжение на шине +12 В до максимума (+16 - 20 В, в зависимости от конкретного экземпляра ИБП). На плате выпаиваем все резисторы, подключенные к выводу 1 ШИМ-контроллера, и собираем цепь регулировки выходного напряжения (рис.3).

Резистором R2 подбираем верхний предел регулировки (обычно +16 В).

Вернемся к защите от превышения выходного напряжения.

Есть два варианта:
— подобрать цепочку из маломощных диодов включенных последовательно с стабилитроном (рис 4а);
— собрать схемку на тиристоре (рис.4б), главное условие защиты - срабатывание при напряжении, на 1 - 1,5 В превышающем напряжения верхнего предела регулировки.
Далее, для уменьшения акустического шума, последовательно с плюсовым проводом вентилятора включаем резистор сопротивлением 10 -15 Ом мощностью 1 Вт (рис.5).

Монтируем выходные клеммы.

Для улучшения работы ИБП включаем цепочку из резистора и двух конденсаторов, согласно рисунку. В разрыв плюсового (оранжевого) провода подключаем амперметр.

Мною был изготовлен УКВ усилитель мощности на транзисторе КТ931, и для его питания необходимо было напряжение 20 - 27 В. Предлагаю вариант соединения двух ИБП в один (рис.6).

Все здесь просто, на мелочах останавливаться не буду, единственное - в ИБП 1 необходимо не забыть в местах крепления платы 1 к корпусу разрезать дорожки к GND и установить диоды VD1 - VD4. Амперметр на рисунке не показан.

Компьютер служит нам годами, становится настоящим другом семьи, и когда он устаревает или безнадёжно ломается, бывает так жалко нести его на свалку. Но существуют детали, которые могут ещё долго прослужить в быту. Это и

многочисленные кулеры, и радиатор процессора, и даже сам корпус. Но самое ценное - это БП. благодаря пристойной мощности при малых габаритах, является идеальным объектом всяческих модернизаций. Его трансформация - не такая уж сложная задача.

Переделка компьютерного в обычный источник напряжения

Нужно определиться какого типа блок питания вашего компьютера, АТ или АТХ. Как правило, это указывается на корпусе. Импульсные БП работают только под нагрузкой. Но устройство блока питания типа АТХ позволяет замыканием зелёного и чёрного проводов искусственно её имитировать. Итак, подключив нагрузку (для АТ) или замкнув необходимые выводы (для АТХ), можно запустить вентилятор. На выходе появляется 5 и 12 Вольт. Максимальный выходной ток зависит от мощности БП. При 200 Вт, на пятивольтовом выходе, ток может достигать порядка 20А, на 12В - около 8А. Так без лишних затрат можно пользоваться хорошим с неплохими выходными характеристиками.

Переделка компьютерного блока питания в регулируемый источник напряжения

Иметь такой БП дома или на работе довольно удобно. Изменить стандартный блок несложно. Нужно заменить несколько сопротивлений и выпаять дроссель. При этом величину напряжения можно регулировать от 0 до 20 Вольт. Естественно, токи останутся в первоначальных пропорциях. Если же вас устраивает максимальное напряжение в 12В, достаточно на его выходе установить тиристорный регулятор напряжения. Схема регулятора очень проста. При этом он поможет избежать вмешательства во внутреннюю часть компьютерного блока.

Переделка компьютерного блока питания в зарядное устройство для автомобиля

Принцип мало чем отличается от регулируемого источника питания. Только желательно поменять на более мощные. Зарядное устройство из БП компьютера имеет ряд преимуществ и недостатков. К плюсам в первую очередь относят малые габариты и небольшой вес. Трансформаторное ЗУ намного тяжелее и неудобней в эксплуатации. Недостатки тоже существенны: критичность к коротким замыканиям и переполюсовке.

Конечно, эта критичность наблюдается и в трансформаторных устройствах, но при выходе из строя импульсного блока переменный ток с напряжением 220В стремится к аккумулятору. Страшно представить последствия этого для всех приборов и находящихся рядом людей. Применение в блоках питания защит решает эту проблему.

Перед использованием такого зарядного устройства, серьёзно отнеситесь к изготовлению схемы защиты. Тем более что существует большое количество их разновидностей.

Итак, не спешите выбрасывать запчасти от старого девайса. Переделка компьютерного блока питания подарит ему вторую жизнь. При работе с БП помните, что его плата постоянно находится под напряжением 220В, а это представляет смертельную угрозу. Соблюдайте правила личной безопасности при работе с электрическим током.


В этой статье расскажу как из старого компьютерного блока питания сделать очень полезный для любого радиолюбителя лабораторный блок питания.
Компьютерный блок питания можно очень дешево купить на местной барахолке или выпросить у друга или знакомого, сделавшего апгрейд своего ПК. Прежде прежде чем начать работу над БП, следует помнить, что высокое напряжения опасно для жизни и нужно соблюдать правила техники безопасности и проявлять повышенную осторожность.
Сделанный нами источник питания будет иметь два выхода с фиксированным напряжением 5В и 12В и один выход с регулируемым напряжением 1,24 до 10,27В. Выходной ток зависит от мощности используемого компьютерного блока питания и в моем случае составляют около 20А для выхода 5В, 9А для выхода 12В и около 1.5А для регулируемого выхода.

Нам понадобятся:


1. Блок питания от старого Пк (любой ATX)
2. Модуль ЖК вольтметра
3. Радиатор для микросхемы(любой, подходящий по размеру)
4. Микросхема LM317 (регулятор напряжения)
5. электролитический конденсатор 1мкФ
6. Конденсатор 0.1 мкФ
7. Светодиоды 5мм - 2шт.
8. Вентилятор
9. Выключатель
10. Клеммы - 4шт.
11. Резисторы 220 Ом 0.5Вт - 2шт.
12. Паяльные принадлежности, 4 винта M3, шайбы, 2 самореза и 4 стойки из латуни длиной 30мм.

Я хочу уточнить, что список примерный, каждый может использовать то, что есть под рукой.

Общие характеристики блока питания ATX:

Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги:
а) Входное высокое напряжение сначала выпрямляется и фильтруется.
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между
высоковольтной и низковольтными частями схемы.
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.

Основными достоинствами таких источников являются:
- Высокая мощность при небольших размерах
- Высокий КПД
Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В.

К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора.

Мощность блока питания

Электрические характеристики блока питания напечатаны на наклейке (см. рисунок) которая, обычно, находится на боковой стороне корпуса. Из нее можно получить следующую информацию:


Напряжение - Ток

3.3В - 15A

5В - 26A

12В - 9А

5 В - 0,5 А

5 Vsb - 1 A


Для данного проекта нам подходят напряжения 5В и 12В. Максимальный ток, соответственно будет 26А и 9А, что очень неплохо.

Питающие напряжения

Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:

Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK.

Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме.
Разъем PS_ON (включение питание) используется для включения блока питания из дежурного режима. При подаче на этот разъем напряжения 0В блок питания включается, т.е. чтобы запустить блок питания без материнской платы его нужно соединить с общим проводом (землей).
Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю. После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.

ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.

Модернизация блока питания

1. Разборка и чистка


Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.

2. Подготавливаем провода


Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый.
Если есть достаточно мощный паяльник - лишние провода отпаиваем, если нет - откусываем кусачками и изолируем термоусадкой.

3. Изготовление передней панели.


Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.

4. Размещение стоек


Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.

5. Регулировка и стабилизация напряжения

Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.
LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току.
Схема включения и распиновка микросхемы приведены ниже:


Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы:


Либо упрощенная форма этого выражения:

Vout = 1.25(1+R2/R1)


Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.

Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В.

Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем:
R2=(Vout-1,25)(R1/1.25)
R2=(12-1.25)(240/1.25)
R2=2064 Ома

Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие:
R1=240 Ом, R2=2 кОм

На этом расчет регулятора закончен.

6. Сборка регулятора

Сборку регулятора выполним по следующей схеме:



Ниже приведу принципиальную схему:


Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате.

Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема.

Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:

7. Подключение

Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой:

Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель.

пн, 25/08/2008 - 16:13 - Petrovich

Конструкция выходного дня.

Неожиданно наступила зима и за окном похолодало. А тут ещё бензин какой-то не тот залил. В общем король немецкого автопрома встал, где-то под Москвой как и 67 лет назад его старшие "проотцы". Аккумулятор сел, дальше пешком.... Для зарядки аккумулятора дома нашлась только пара сгоревших блоков ATX. Сразу добавлю, что эта "зарядка" не предназначена для восстановления, десульфатации и протчих не перспективных шаманских методов, чем занимались наши отцы (и я в том числе) в прошлой жизни из-за крайней убогости быта.

Это просто блок, позволяющий надёжно и наименьшими затратами зарядить "севший", но исправный аккумулятор. Суть его проста и внятна. Он выдаёт на выходе зарядный ток около 5-6 Ампер, при любой активной нагрузке, вплоть до короткого замыкания. При этом напряжение на выходе ни при каких обстоятельствах не превысит заданного значения. Я установил 14,6 вольт.

Сначала надо бы добиться работоспособности блока

По порядку для "чайников" о восстановлении блоков, общие правила:


Частота внутреннего генератора определяется по формуле:

где R и С это резистор и конденсатор на выводах 6 и 5 соответственно, то есть это не вырезать.

Вывод 14 это выход внутреннего источника опорного напряжения +5 вольт.

Выводы 1,2,15 и 16 это входы 2-х встроенных компараторов, которые пользователь может использовать по своему усмотрению, т.е. управлять шириной выходных импульсов ШИМ. Оба компаратора совершенно одинаковы с той лишь разницей, что компаратор с выводами 15-16 срабатывает с "задержкой" 80 мВольт. В попавших мне АТХ этот компаратор не использовался, 16 вывод заземлён, а 15 соединён на Uref, т.е. 14 вывод.

Вывод 13 предназначен для перевода TL-494 в режим управления обратноходовыми однотактными преобразователями. При этом "мёртвое время" может быть увеличено до 96%. В нашем, "двухтактном" случае этот вывод так же соединяется на Uref.

Компаратор на выводах 1-2 мы будем использовать для установки выходного напряжения, для этого на вывод 2 подаём часть Uref, что и сделано в большинстве АТ и АТХ. Обычно это напряжение примерно 2,5 вольт, т.е. с Uref (+5Вольт) через резистивный делитель.

RC цепочка с вывода 2 на вывод 3 (FB или ОС) предназначена для ограничения скорости ШИМ при стабилизации напряжения и имеется во всех схемах АТ-АТХ. Её тоже вырезать нельзя.

Рисую упрощённую схему управления выходным напряжением.

Напряжение на выходе БП будет равно Uвых=Uref1(1+Roc/Rm) . Теперь Вы должны сами с калькулятором в руках решить из каких резисторов составить делитель. Я это сделал как показано на схеме. Проверьте обязательно, если эта формула у Вас не заработала, значит Вы не всё урезали. Важно учесть, что без перемотки трансформатора более 18-20 вольт на 12-и вольтовом выходе получить не получится. В принципе БП может дать до 24 вольт, но это при отсутствии нагрузки и полностью "открытой" ШИМ, то есть, когда "мёртвое" время не более 4% от периода. Без дросселя БП будет чувствовать себя не очень комфортно. Ему будет трудно удержать выходное напряжение. Его будет "плющить и колбасить" как автомобиль с заклинившим амортизатором. Наша задача получить ограничение на уровне 14,6-14,8 Вольта. Для "убитых" аккумуляторов надо напряжение до 16 (и более) вольт. Для фанатов восстановления можно накрутить и столько.

На сладкое немного о выводе 4.

Это тоже вход компаратора, но с задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что конструктор микросхемы предусмотрел использовать его для регулировки "мёртвого времени". Обычно в схемах АТХ-АТ его используют как "мягкий пуск" и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.

Работает ОНО так. При включении БП конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5 вольт, что наглухо закрывает выходные ключи микросхемы. Затем конденсатор заряжается через резистор (выв4-земля) и на выводе 4 напряжение падает до нуля. Это приводит к медленному нарастанию выходного напряжения до момента когда оно стабилизируется ОС по напряжению. В нашем случае вывод 4 целесообразно попутно задействовать для ограничения выходного тока. По схеме видно, что при увеличении тока в нагрузку увеличивается падение напряжения на измерительных резисторах (4 резистора 0,22 ом), открывается транзистор 733 (такой p-n-p у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4 и так до режима стабилизации тока. На полной схеме цепь стабилизации тока обведена красным фломастером. Вот так простенько удалось добиться и стабильного тока зарядки и защиты от короткого замыкания на выходе.

Кстати, на выходе советую ни каких электролитических конденсаторов не ставить, тогда при "коротком" не будет ни каких брызг и взрывов, вызывающих неприятные ощущения.

О выходном дросселе.

Можно применить другой сердечник, например Ш-образный с зазором 0,3 мм. А можно оставить оригинальное кольцо, намотав на нём 20-30 витков тем, что мы размотали или тем, что будет под рукой, диаметром не менее 0,75мм. Я намотал 35 витков в два провода диаметром 0,75мм. Обмотка вложилась в два слоя.

...спустя год...

Просматривая даташит на микросхему KA7500 (аналог TL-494) я обнаружил другое, более простое решение стабилизации тока БП. Авторы предлагают использовать второй компаратор (выв.15,16). С учётом того, что изначально этот компаратор смещён на 80 мВ, получается очень удобное решение. Мною оно повторено дважды. В приводимой схеме выходное напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей будки. Для зарядки аккумуляторов естественно, можно использовать блок без перемотки, но всё-таки лучше перемотать. И провод желательно взять по толще, и виточков добавить.

При расчёте количества витков вторичной обмотки желательно, что бы на ХХ напряжение на выходе моста было больше стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и, соответственно, надёжную стабилизацию.

Странно, но оно работает. А вообще-то не должно. Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в каком-то нет. И вообще это смещение маловато для стабильной работы.
Поэтому я промакетировал подобную ОС на "спицах" и вот что получилось.

Для удобства макетирования я выбрал компаратор LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот теперь всё красиво. Компаратор срабатывает на 6,1 Ампера.
Красный луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор 0,15 Ом сделать легче и греться будет меньше, чем 0,3.
Тогда схема чуток меняется.

Перемотка трансформаторов (перемотал 5 штук) ни разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 - 200 градусов и в перчатках аккуратненько расшатываю.

Превращаем ненужный БП от компьютера в мощное зарядное устройство - лабораторный блок питания. Пошаговая фотоинструкция. Вначале ищем компьютерный блок питания формата ATX. ищем компьютерный блок питания формата ATX Выпаиваем всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Также нужно выпаять диод, (отмечено 1 на плате) соединяющий выходную обмотку силового трансформатора с + питания TL494 – она будет питаться только от маленького «дежурного» преобразователя (у него есть не только 5V выход, но и 12V), чтобы не зависеть от выходного напряжения БП. И обратите внимание на электролит отмененным 2-ой, его оставить, он бывает от 1 до 4.7мкф. Я его меняю на 10мкфХ10в. Делаем мощное зарядное устройство из БП АТХ Отсоединяем от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока. Делаем мощное зарядное устройство из АТХ Пунктиром очерчены детали, которые уже есть в БП. ЗАРЯДНОЕ УСТРОЙСТВО - ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ ATX - СХЕМА Выпрямительные диоды нужно соединить с 12-ти вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить более мощные, например сборку 30CPQ150 – тогда можно максимальный выходной ток увеличить до 20А. 30CPQ150 Дроссель L1 делаем из кольца, оставив на нём только 5-тивольтовую обмотку, дроссель L2 из цепи 5V. Дроссель БП делаем из кольца Приводим схему выходной части в соответствие со схемой. Вентилятор запитываем от питания TL494 (12 нога) – так, чтобы он дул внутрь корпуса. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494. Резисторы R9 и R8 задают опорные напряжения. мощное зарядное устройство из БП АТХ - пошаговая инструкция Переменный резистор R9 регулирует выходное напряжение, R8 – выходной ток. Так как мне не нужно напряжение, а только ток для зарядки, то напряжение сделал на полную (получилось 24в), а оставил только регулятор тока. Токоизмерительный резистор R7 на 0.05 ом должен быть мощностью 5 ватт (10А^2*0.05ом). Питание для ОУ берём с выхода «дежурных» 5В БП ATX (обычно обозначены на плате как +5V SB или 5V STANDBY, фиолетовый провод). Нагрузка подключается к +OUT и -OUT. Автомобильное зарядное устройство из БП АТХ - переделка и описание Измерительный резистор R7 – это два 5-тиваттных резистора (белые) по 0.1ом соединённые параллельно. Автомобильное зарядное устройство из БП АТХ компьютера Нагрузочный резистор 470ом 1 Вт ставим параллельно C5. Он нужен чтобы БП ATX без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 включён. Без него, тоже работать будет, но тогда если установить более низкое напряжение при отключенной от выхода нагрузке – долго ждать, пока C4 и C5 разрядятся до нужного напряжения. САМОДЕЛЬНОЕ ЗАРЯДНОЕ УСТРОЙСТВО - ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ Упаковываем все в корпус, выводим необходимые элементы, и радуемся отличному лабораторному блоку питания, он же по совместительству импульсное зарядное устройство для автомобильных аккумуляторов. Автор статьи и фото: ear