Цвет и его использование в компьютерной графике. Представление цвета в компьютерной графике Цвет в компьютерной графике методы его представления

Цвет и его использование в компьютерной графике. Представление цвета в компьютерной графике Цвет в компьютерной графике методы его представления
Цвет и его использование в компьютерной графике. Представление цвета в компьютерной графике Цвет в компьютерной графике методы его представления

Понятия света и цвета в компьютерной графике являются основополагающими. На практике мы редко сталкиваемся со светом какой-то одной определенной длины волны (исключение составляет лишь излучение лазера). Обычно свет представляет собой непрерывный поток волн с различными длинами волн и различными амплитудами. Такой свет можно характеризовать так называемой энергетической (мощностной) спектральной кривой (рис. 1), где само значение функции представляет собой вклад волн с длиной волны l в общий волновой поток.

Само понятие цвета тесно связано с тем, как человек (человеческий взгляд) воспринимает свет; можно сказать, что цвет зарождается в глазу.

Субхарактеристики цвета :

Цветовой тон – ярковыраженность красного(R ) , зелёного(G ) или синего(В ) –это основная цветовая характеристика.

Насыщенность – степень разбеленности, степень осветления цветового фона.

Светлота - интенсивность (мощность) цвета.

l домин. – характеризует цветовой тон

Цвет, который может быть заменен l домин. называется спектральным.

- насыщенность


Ахроматическое изображение – это черно-белое изображение.

Сетчатка глаза содержит два принципиально различных типа фоторецепторов – палочки, обладающие широкой спектральной кривой чувствительности, вследствие чего они не различают длин волн и, следовательно, цвета, и колбочки, характеризующиеся узкими спектральными кривыми и поэтому обладающие цветовой чувствительностью.

Колбочки бывают трех типов, отвечающих за чувствительность к длинным, средним и коротким волнам. Выдаваемое колбочкой значение является результатом интегрирования спектральной функции с весовой функцией чувствительности.

На рисунке представлены графики функций чувствительности для всех трех типов колбочек. Видно, что у одной из них пик чувствительности приходится на волны с короткой длиной волны (синий цвет), у другой – на волны средней длины волны (желто-зеленый цвет), а у третьей – на волны с большой длиной волны (красный цвет).

Существует трёхкомпонентная гипотеза: любой цвет (оттенок) можно получить из 3-х компонентов R,G,B.


Схема уравнивания цветов.

Есть 3 прожектора. Перед ними выставляются цветофильтры, пропускающие волны определённой длины.

Суть в том, что первые 3 прожектора имеют феостаты для регулировки цвета.

С их помощью добиваются, чтобы цвет пересечения первых 3 пятен стал эквивалентен цвету C . Изменяя интенсивности прожекторов R, G, B, пытаются получить цвет C. Если это удается, то цвет C разложили по R, G, B.

Интенсивность по каналу 3 отрицательная.


Аксиомы смещения цветов Грассмана.

Аксиома 1:

Любой цвет может быть уравнен смесью не менее, чем трех любых цветов. Коэффициенты могут быть и положительными и отрицательными.

Аксиома 2:

Уравнивание, достигнутое при данных интенсивностях цвета, сохраняется в широком диапазоне интенсивностей.

Аксиома 3:

Смесь цветов не может быть разделена человеческим глазом на отдельные компоненты.

Аксиома 4:

Яркость (светлота) смеси цветов равна сумме яркости её компонентов.

Аксиома 5: Закон сложения цветов .

Если цвет M эквивалентен цвету N , а цвет P эквивалентен Q , то смесь цветов M+P эквивалентна смеси N+Q .

M = N ; P = Q ;

M + P = N + Q ;

Аксиома 6: Закон вычитания цветов.

Если M + P = N + Q и известно, что P = Q , то M = N (обратное пункту 5)

Аксиома 7: Закон транзитивности.

Если M = N ; N = P , то M = P .

Аксиома 8:

Аксиома представляет собой рассуждения об уравнивании цветов:

Со всеми положительными коэффициентами;

С одним отрицательным коэффициентом;

С двумя отрицательными коэффициентами.

Остальные в телевизоре не видны.

У практики отображения информации в графическом виде много синонимов, но в последнее время чаще всего используются два - визуализация данных и инфографика. Визуализация данных - это отображение больших массивов числовой и семантической информации в виде графических объектов. Продукты визуализации данных предназначены для дальнейшей интеграции в информационные системы и системы поддержки принятия решений.

Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки, статистика и отчеты и др.

КОМПЬЮТЕРНАЯ ГРАФИКА

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика, получившая развитие в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, в особенности персональных. Графический интерфейс пользователя сегодня является стандартом для программного обеспечения разных классов, начиная с операционных систем.

Графический редактор - программа (или пакет программ), позволяющая создавать и редактировать двух- и трёхмерные изображения с помощью компьютера. Современные графические редакторы изображений используются как программы для рисования с нуля, и как программы для редактирования фотографий.

В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную и фрактальную.

Рис. 1. Различные виды графики.

Отдельным предметом считается трехмерная (3 D ) графика , изучающая приёмы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как чёрно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web -графика, компьютерная полиграфия и прочие.

На стыке компьютерных, телевизионных и кинотехнологий зародилась и стремительно развивается новая область компьютерной графики и анимации.

Компьютерная графика является одной из наиболее бурно развивающихся отраслей информатики и во многих случаях выступает «локомотивом», тянущим за собой всю компьютерную индустрию.

Передача цвета

Для передачи и хранения цвета в компьютерной графике используются различные формы его представления. В общем случае цвет представляет собой набор чисел, координат в некоторой цветовой системе.

Стандартные способы хранения и обработки цвета в компьютере обусловлены свойствами человеческого зрения. Наиболее распространены системы RGB (Red -красный, Green - зеленый, Blue - синий) для дисплеев и CMYK для работы в типографском деле. Иногда используется система с большим, чем три, числом компонент. Кодируется спектр отражения или испускания источника, что позволяет более точно описать физические свойства цвета. Такие схемы используются в фотореалистичном трёхмерном рендеринге.

Рис. 2. Система цветопередачи RGB . Рис. 3. Схема субтрактивного синтеза в CMYK

      Растровая графика

Растровая графика - прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей ). Каждый такой пиксель может быть окрашен в какой-нибудь один цвет. Например, монитор, с разрешением 1024х768 пикселей имеет матрицу, содержащую 786432 пикселей, каждый из которых (в зависимости от глубины цвета) может иметь свой цвет. Т.к. пиксели имеют очень маленький размер, то такая мозаика сливается в единое целое и при хорошем качестве изображения (высокой разрешающей способности) человеческий глаз не видит «пикселизацию» изображения.

При уменьшении изображения происходит обратный процесс - компьютер просто "выбрасывает" лишние пиксели. Отсюда главный минус растровой графики - зависимость качества изображение от его размеров.

Растровую графику следует применять для изображений с фотографическим качеством, на котором присутствует множество цветовых переходов. Размер файла, хранящего растровое изображение зависит от двух факторов: размера изображения; от глубины цвета изображения (чем больше цветов представлено на картинке, тем больше размер файла).

Рис. 3 . Изменение растровой картинки при увеличении.

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать: разрешение оригинала; разрешение экранного изображения; разрешение печатного изображения.

Разрешение оригинала. Разрешение оригинала при печати измеряется в точках на дюйм (dots per inch – dpi ) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. Чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения . Для экранных копий изображения элементарная точка растра называется пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения. Мониторы для обработки изображений с диагональю 20–21 дюйм обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768,1280х1024,1600х1200,1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм. Для экранной копии достаточно разрешения 72 dpi , для распечатки на цветном или лазерном принтере 150–200 dpi , для вывода на фотоэкспонирующем устройстве 200–300 dpi . Обычно при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода.

Интенсивность тона (так называемую светлоту) принято подразделять на 256 уровней. Большее число градаций не воспринимается зрением человека и является избыточным. Меньшее число ухудшает восприятие изображения (минимально допустимым для качественной полутоновой иллюстрации принято значение 150 уровней). Нетрудно подсчитать, что для воспроизведения 256 уровней тона достаточно иметь размер ячейки растра 256=16х16 точек.

Связь между параметрами изображения и размером файла . Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в передаче цветов и полутонов. Однако размеры файлов растровых иллюстраций стремительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего просмотра (стандартный размер 10х15 см, оцифрованный с разрешением 200-300 dpi , цветовое разрешение 24 бита), занимает в формате TIFF с включенным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.

Масштабирование растровых изображений . Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию. Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании. Другой приём состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек.

Некоторый класс растровых графических редакторов предназначен не для создания изображений «с нуля», а для обработки готовых рисунков с целью улучшения их качества и реализации творческих идей. К таким программам, в частности, относятся Adobe Photoshop , Photostyler, Picture Publisher и др. Исходная информация для обработки на компьютере может быть получена разными путями: сканированием 1т цветной иллюстрации, загрузкой изображения, созданного в другом редакторе, или вводом изображения от цифровой фото- или видеокамеры.

Усиления зритель­ного впечатления и повышения информационной насыщенности изображения. Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов. Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека. Зрительная система человека воспринимает электромагнитную энергию с длинами волн от 400 до 700 нм как видимый свет (1 нм = 10 -9 м). Свет принимается либо непосредственно от источника, например электрической лампочки, либо косвенно при отражении от поверхности объекта или преломлении в нем. Источник или объект является ахроматическим, если наблюдаемый свет содержит все видимые длины волн в приблизительно равных количествах. Ахроматический источник кажется белым, а отраженный или преломленный ахроматический свет - белым, черным или серым . Белыми выглядят объекты, ахроматически отражающие более 80% света белого источника, а черными - менее 3%. Промежуточные значения дают различные оттенки серого. Хотя трудно определить различие между светлотой и яркостью, светлота обычно считается свойством несветящихся или отражающих объектов и изменяется от черного до белого, а яркость является свойством самосветящихся или излучающих объектов и изменяется в диапазоне от низкой до высокой . Если воспринимаемый свет содержит длины волн в произвольных неравных количествах, то он называется хроматическим. Если длины волн сконцентрированы у верхнего края видимого спектра, то свет кажется красным или красноватым, т. е. доминирующая длина волны лежит в красной области видимого спектра. Если длины волн сконцентрированы в нижней части видимого спектра, то свет кажется синим или голубоватым, т. е. доминирующая длина волны лежит в синей части спектра. Однако сама по себе электромагнитная энергия определенной длины волны не имеет никакого цвета. Ощущение цвета возникает в результате преобразования физических явлений в глазу и мозге человека. Цвет объекта зависит от распределения длин волн источника света и от физических свойств объекта. Объект кажется цветным, если он отражает или пропускает свет лишь в узком диапазоне длин волн и поглощает все остальные .

В машинной графике применяются две системы смешения основных цветов: аддитивная - красный, зеленый, синий (RGB) и субтрактивная - голубой, пурпурный, желтый (CMY). Цвета одной системы являются дополнительными к другой: голубой - к красному, пурпурный - к зеленому, желтый - к синему. Дополнительный цвет - это разность белого и данного цвета: голубой это белый минус красный, пурпурный - белый минус зеленый, желтый - белый минуc синий. Хотя красный можно считать дополнительным к голубому, по традиции красный, зеленый и синий считаются основными цветами, а голубой, пурпурный, желтый - их дополнениями. Интересно, что в спектре радуги или призмы пурпурного цвета нет, т. е. он порождается зрительной системой человека. Для отражающих поверхностей , например типографских красок, пленок и несветящихся экранов применяется субтрактивная система CMY. В субтрактивных системах из спектра белого цвета вычитаются длины волны дополнительного цвета. Например, при отражении или пропускании света сквозь пурпурный объект поглощается зеленая часть спектра. Если получившийся свет отражается или преломляется в желтом объекте, то поглощается синяя часть спектра и остается только красный цвет. После его отражения или преломления в голубом объекте цвет становится черным, так как при этом исключается весь видимый спектр. По такому принципу работают фотофильтры. Аддитивная цветовая система RGB удобна для светящихся поверхностей, например экранов ЭЛТ или цветных ламп.

Способы описания цвета

В компьютерной графике применяют понятие цветового разрешения (другое назва­ние - глубина цвета ). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изобра­жения достаточно одного бита (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков. При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов

С практической точки зрения цветовому разрешению близко понятие цветового охвата, имеется в виду диапазон цветов, который можно воспроизвести на устройствах вывода. Цветовые модели расположены в трехмерной системе координат, которая образует цветовое пространство. При этом исходят из законов Грассмана о том, что цвет можно выразить точкой в трехмерном пространстве.

Цветовая модель CIE Lab

В1920 году была разработана цветовая пространственная модель CIE Lab

L,a,b - обозначения осей координат в этой системе). Система является аппаратно независи­мой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (I) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого . Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится пре­образовывать. Данная модель была разработана для согласования цветных фото­химических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.

Цветовая модель RGB

Рис.. Аддитивная цветовая модель RGB

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов - красного, зеле­ного, синего. Она служит основой при создании и обработке компью­терной графики, предназначенной для электронного воспроизведения (на мони­торе, телевизоре). При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому - максимальные, с координатами (255,255,255).

RGB с Альфа - каналом

Альфа-канал позволяет объединять изображение с его фоном. Каж­дое значение пикселя содержит дополнительное Альфа-значение, размер которого в битах равен глуби­не цвета изображения. Цветовая модель RGB с Альфа - каналом может использоваться только при глубине цвета равной 8 и 16 битам.

Нулевое значение Альфа - канала означает, что пиксель полностью прозрачен, и в этом случае фон полностью виден через изображение.

Значение Альфа – канала равному 2 глубина цвета изображения -1

соответствует полностью непрозрачному пикселю; это означает, что фон полностью закрыт изо­бражением. Когда значение Альфа - канала равно промежу­точной величине, цвет пикселя сливается с фоном посредством некоторого алгоритма.

Цветовая модель HSB


Рис. Цветовая модель HSB
Цветовая модель HSB разработана с максимальным учетом особенностей восприя­тия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue ), насыщенностью (Saturation ) и яркостью (Brightness ). Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности - чистым спектральным цветам. Направление вектора задается в градусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической , задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекры­вает все известные значения реальных цветов.

Модель HSB принято использовать при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специ­альные программы, имитирующие кисти, перья, карандаши. Обеспечивается ими­тация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от предполагаемого способа публикации. В настоящее время эта цветовая модель используется только в некоторых программах обработки изображения.

Цветовая модель YCbCr

Изображения в формате JPEG почти всегда сохраняются с использованием трехкомпонентного цветового пространства YCbCr. Компонент Y или яркость представляет яркость изображения. Компоненты Cb и Cr определяют цветность. Значение Cb задает синеву изображения, а значение Cr задает его красноту.

Соотношение между цветовыми моделями YCbCr и RGB находят по соответствующим формулам.


Все рассмотренные выше модели относятся к аддитивным. Это означает, что компоненты добавляют цвет в изображение. Чем выше значение компонента, тем ближе цвет к белому.
Цветовая модель CMYK, цветоделение

Рис. Цветовая модель CMYK
Цветовая модель относится к субтрактивным, и ее используют при подго­товке публикаций к печати. Цветовыми компонентами CMY служат цвета, полу­ченные вычитанием основных из белого:

голубой (cyan) = белый - красный = зеленый + синий;

пурпурный (magenta) = белый - зеленый = красный + синий;

желтый (yellow) = белый - синий = красный + зеленый.

Такой метод соответствует физической сущности восприятия отраженных от печат­ных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополнительными , потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY - наложение друг на друга дополни­тельных цветов на практике не дает чистого черного цвета. В модели CMYK большие значения компонентов представляют цвета, более близкие к черному. При комбинации голубой, пурпурной и желтой красок поглощается весь цвет, что теоретически должно приводить к черному цвету, но на практике чистый черный цвет не создается. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blacK ). Между моделью и RGB нет однозначного соответствия. На одно и то же значение RGB отображается множество значений CMYK.

Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением . В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.


Гамма

Цветовые модели, используемые для представления изобра­жений, основываются на предположении, что между значе­нием цветового компонента и цветом, видимым на экране, существует линейная связь. В действительности применяе­мые устройства отображения не реагируют линейно на по­ступающий входной сигнал. Гамма приближение описывает нелинейные характеристики этих устройств. С ма­тематической точки зрения, Гамма - степенная функция:

Настройка Гаммы изображения может выполняться как со­вместно с преобразованием в цветовое пространство XYZ, так и отдельно. Регулировка Гаммы оказывает большее воздей­ствие на вид изображения на компьютерном мониторе, чем преобразование в цветовое пространство XYZ и обратно.

Эффект воздействия Гаммы на изображение состоит в при­ дании компоненту более темного или более светлого оттенка.

Системы координат

Для создания сложного реалистического компьютерного изображения необходимо математическую модель изображаемого объекта или процесса достоверно повторить на экране в пространстве и во времени. При этом необходимо задавать положение точек, линий и поверхностей в различных системах координат. Положение точки в Евклидовом пространстве задается радиус-вектором, который имеет n координат и разложение по n линейно-независимым базисным векторам. Совокупность базисных векторов и единиц измерения расстояний вдоль этих векторов составляет систему координат . Для описания формы графических объектов, задания расположения объектов в пространстве и их проекций на экране дисплея используют различные СК, наиболее удобные в каждом конкретном случае. Положение точек в пространстве удобно описывается с помощью декартовой системы координат. Декартова система координат имеет три направленные прямые линии, которые не лежат в одной плоскости – оси координат, оси пересекаются в одной точке – начале координат . На осях выбирается единица измерения. Положение любой точки в пространстве описывается через координаты этой точки, которые представляют собой расстояния от начала координат до проекций точки на соответствующие оси координат. Для практических расчетов удобнее , чтобы оси координат были расположены взаимно перпендикулярно. Такая система координат называется ортогональной . Взаимное расположение осей в ортогональной системе координат может быть двух видов. Ось 0 z может проходить в направлении от наблюдателя в плоскость листа – это левосторонняя система координат. Если ось 0 z проходит от плоскости листа к наблюдателю – это правосторонняя система координат.

Системы координат наиболее часто применяемые в компьютерной графике

Мировая система координат является основной системой координат, в ней заданы все объекты сцены. Одной из распространенных задач компьютерной графики является изображение двумерных графиков в некоторой системе координат. Эти графики предназначены для отображения зависимости между переменными, заданными с помощью функций. Например, графики, характеризующих восприятие света глазом человека. Чтобы получить такой график, прикладная программа должна описать различные выходные примитивы (точки, линии, цепочки символов), указав их местоположение и размеры в прямоугольной системе координат. Единицы измерения, в которых задаются эти объекты, зависят от их природы: изменение температуры, например, можно отображать в градусах за час, перемещение тела в пространстве - в километрах в секунду, и т. д. Эти прикладные (или ориентированные на пользователя) координаты позволяют задавать объекты в двумерном или трехмерном мире пользователя, и их принято называть мировыми координатами .

Неподвижная мировая система координат (МСК) x, y, z, содержит точку отсчета (начало координат) и линейно независимый базис (совокупность базисных векторов – осей координат), благодаря этому возможно цифровое описание геометрических свойств любого графического объекта в абсолютных величинах . Мировую систему координат обозначим x м y м z м .

Модельная система координат – система координат, в которой задана внутренняя структура объектов.

Экранная система координат - в ней задается положение проекций геометрических объектов на экране дисплея. Проекция точки в ЭСК имеет координату z э =0. Однако не следует отбрасывать эту координату, т. к. МСК и ЭСК часто выбираются совпадающими, а также вектор проекции [ x э y э 0] может участвовать в преобразованиях, к которых нужны не две, а три координаты.

Выбор точки и направления зрения можно описать математически, введя декартову систему координат наблюдателя , начало которой находится в точке обзора, а одна из осей совпадает с направлением зрения

Система координат сцены (СКС) x с y с z с , в которой описывается положение всех объектов сцены – некоторой части мирового пространства с собственными началом отсчета и базисом, которые используются для описания положения объектов независимо от МСК.

Объектная система координат (ОСК) x о y о z о , связанная с конкретным объектом и совершающая с ним все движения в СКС или МСК.
Изображение трехмерных объектов сопряжено с целым рядом задач. Прежде всего надо помнить, что изображение является плоским, поэтому надо добиться адекватной передачи визуальных свойств предметов, дать достаточно наглядное представление о глубине. В дальнейшем группы трехмерных объектов, предназначенных для изображения, будем называть пространственной сценой , а ее двумерное изображение - образом .

Рис. 4.3. Объектная система координат и система координат наблюдателя
Видимый образ формируется на некоторой плоскости, которую в дальнейшем будем называть картинной плоскостью . Способы преобразования трехмерного объекта в двумерный образ (проекции ) могут быть различными. Так или иначе, но полученный образ также должен быть описан в некоторой двумерной системе координат. В зависимости от способа его получения реальные размеры образа также могут быть различны. Различные виды проецирования будут подробно рассмотрены позднее.

Рис. 4.4. Картинная плоскость и экран

Поскольку нашей конечной целью является получение изображения на экране, то перенесение образа сопровождается изменением масштаба в соответствии с размерами экрана. Обычно началом координат в системе координат образа считается левый нижний угол листа с изображением. На экране дисплея начало координат традиционно находится в левом верхнем углу. Отображение рисунка с картинной плоскости на экран должно производиться с минимальным искажением пропорций, что само по себе вносит ограничение на область экрана, занимаемую рисунком. Изменение масштаба должно осуществляться с сохранением пропорций области (рис. 4.4).

Объекты в системе координат картинной плоскости задаются в каких- либо единицах измерения, причем масштаб одинаков по обеим осям координат. На экране единицей измерения является пиксель, который следует рассматривать как прямоугольный, поэтому масштабы по горизонтальной и вертикальной осям могут быть различны, что необходимо учитывать при задании коэффициентов масштабирования

Пример преобразований в системах координат

Для того, чтобы управлять изображением на экране, вносить изменения в его положение, ориентацию и размер производят геометрические преобразования. Они позволяют изменять характеристики объектов в пространстве. Допустим необходимо создать на компьютере изображение движения солнца по небу и автомобиля по земле. Данную картину наблюдатель видит из определенной точки в пространстве в определенном направлении. Чтобы описать эти сложные преобразования математически сначала следует выбрать системы координат.

Первая система координат – мировая, зададим ее осями x м y м z м , она размещается в некоторой точке и остается всегда неподвижной.

Вторая система координат определяет положение наблюдателя в пространстве и задает направление взгляда – система координат наблюдателя x n y n z n .

Третья система – система координат объекта, их будет две: система координат солнца и система координат автомобиля. Эти системы могут перемещаться и изменять свое положение в пространстве относительно мировой системы координат. Координаты точек объектов задаются в системах координат объектов, каждая из них привязана к мировой системе координат. Система координат наблюдателя тоже перемещается относительно мировой системы координат. Чтобы увидеть трехмерный объект на дисплее нужно выполнить:


  • Преобразовать координаты объекта, заданные в собственной системе координат, в мировые координаты;

  • Преобразовать координаты объекта из мировой системы в систему координат наблюдателя;
Спроецировать полученные координаты на плоскость в с системе координат наблюдателя, при этом мы будем иметь положение всех объектов сцены в координатах сцены.

Этапы построения изображений
Как было сказано ранее, компьютерная графика изучает методы построения изображений различных геометрических объектов и сцен. Главными этапами построения изображений являются:


  • Моделирование, которое использует методы математического описания объектов и сцен самой разной природы в двух- и трехмерном пространстве.

  • Визуализация – методы построения реалистических изображений объемного мира на плоском экране дисплея ЭВМ, при этом модели объектов и сцен преобразуются в статическое изображение или фильм (последовательность статических кадров).
Все графические объекты приводятся к алгоритмическому виду, это отличает компьютерную графику от обычной.

Геометрические преобразования

Цель изучения геометрических преобразований – научиться описывать движение объектов и визуализировать объекты математически. Геометрическое преобразование – это отображение образа точки, принадлежащей n -мерному Евклидову пространству в точку n ’ -мерного прообраза. К геометрическим преобразованиям относятся проективные преобразования и аффинные преобразования.


Проективные преобразования. Проекции

Для того чтобы синтезировать изображение на экране ПК, необходимо предложить способ математического описания объектов в трехмерном пространстве или на плоскости. Проективные преобразования изображают сцену в желаемом ракурсе. Проекцией называется способ перехода трехмерных объектов к их изображению на плоскости. Проецирование – это отображение трехмерного пространства на двухмерную картинную плоскость (КП). Получение проекции основывается на методе трассировки лучей. Из центра проецирования (проектора) проводятся лучи через каждую точку объекта до пересечения с КП. Фигура на плоскости, которая образуется точками пересечения лучей с картинной плоскостью, является проекцией объекта. Важным свойством любого метода проецирования является достоверность восприятия объекта по его проекции. Проекции, одинаково хорошо подходящей для любых задач не существует. Плоская геометрическая проекция – это тип проецирования на плоскую поверхность прямыми линиями. Плоские геометрические проекции бывают центральные и параллельные. Если центр проекции находится на конечном расстоянии от проекционной плоскости, то это центральная проекция. Если центр проекции удален на бесконечность, то такая проекция является параллельной. Центральные проекции имеют от одной до трех точек схода. Точкой схода называется точка пересечения центральных проекций всех параллельных прямых, которые не параллельны проекционной плоскости.


2012 -> Стерлитамакский филиал
2012 -> Питання про виникнення людини хвилює людство здавна. У XIX ст
2012 -> Методические рекомендации по проведению занятий с применением интерактивных форм обучения
2012 -> Тема опыта
2012 -> Вопросы к экзамену Планирование и организация работы кадровой службы Современные концепции управления персоналом

I . Системы цветов в компьютерной графике

1. Основные понятия компьютерной графики…………………2 стр.

2. Цвет и цветовые модели ……………………………………...4 стр.

3. Цветовая модель RGB…………………………………………5 стр.

4..Системы цветов HSB и HSL…………………………………..6 стр.

5. Цветовая модель HSB…………………………………………7 стр.

6. Цветовая модель CIE Lab……………………………………..8 стр.

7. Цветовая модель CMYK, цветоделение…………………….. 8 стр.

II . Практическая часть

1.Практический вопрос (создание рисунка в программе CorelDRAW)

Список используемой литературы …………………….............11стр.

Основные понятия компьютерной графики

В компьютерной графике с понятием разрешения обычно происходит больше всего путаницы, поскольку приходится иметь дело сразу с несколькими свойствами разных объектов. Следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана - это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселах (точках) и определяет размер изображения, которое может поместиться на экране целиком.
Разрешение принтера - это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения - это свойство самого изображения. Оно тоже измеряется в точках на дюйм - dpi и задается при создании изображения в графическом редакторе или с помощью сканера. Так, для просмотра изображения на экране достаточно, чтобы оно имело разрешение 72 dpi, а для печати на принтере - не меньше как 300 dpi. Значение разрешения изображения хранится в файле изображения.

Физический размер изображения определяет размер рисунка по вертикали (высота) и горизонтали (ширина) может измеряться как в пикселах, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселах, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет.
Физический размер и разрешение изображения неразрывно связаны друг с другом. При изменении разрешения автоматически меняется физический размер.

При работе с цветом используются понятия: глубина цвета (его еще называют цветовое разрешение) и цветовая модель.
Для кодирования цвета пиксела изображения может быть выделено разное количество бит. От этого зависит то, сколько цветов на экране может отображаться одновременно. Чем больше длина двоичного кода цвета, тем больше цветов можно использовать в рисунке.

Глубина цвета - это количество бит, которое используют для кодирования цвета одного пиксела. Для кодирования двухцветного (черно-белого) изображения достаточно выделить по одному биту на представление цвета каждого пиксела. Выделение одного байта позволяет закодировать 256 различных цветовых оттенков. Два байта (16 битов) позволяют определить 65536 различных цветов. Этот режим называется High Color. Если для кодирования цвета используются три байта (24 бита), возможно одновременное отображение 16,5 млн цветов. Этот режим называется True Color. От глубины цвета зависит размер файла, в котором сохранено изображение.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью . Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями: RGB, CMYK, НSB.

Цвет и цветовые модели.

Цвет аддитивный и субтрактивный.

Аддитивный цвет получается при соединении света разных цветов. В этой схеме отсутствие всех цветов представляет собой чёрный цвет, а присутствие всех цветов - белый. Схема аддитивных цветов работает с излучаемым светом, например, монитор компьютера.

В схеме субтрактивных цветов происходит обратный процесс. Здесь получается какой-либо цвет при вычитании других цветов из общего луча света. В этой схеме белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие даёт чёрный цвет. Схема субтрактивных цветов работает с отражённым светом.

В компьютерной графике применяют понятие цветового разрешения (другое название – глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно- белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов (режим называют С практической точки зрения цветовому разрешению монитора близко понятие цветового охвата. Под ним подразумевается диапазон цветов, который можно воспроизвести с помощью того или иного устройства вывода (монитор, принтер, печатная машина и прочие). В соответствии с принципами формирования изображения аддитивным или субтрактивным методами разработаны способы разделения цветового оттенка на составляющие компоненты, называемые цветовыми моделями. В компьютерной графике в основном применяют модели RGB и HSB (для создания и обработки аддитивных изображений) и CMYK (для печати копии изображения на полиграфическом оборудовании). Цветовые модели расположены в трехмерной системе координат, образующей цветовое пространство, так как из законов Гроссмана следует, что цвет можно выразить точкой в трехмерном пространстве.

Первый закон Грассмана (закон трехмерности). Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная независимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй закон Грассмана (закон непрерывности). При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий закон Грассмана (закон аддитивности). Цвет смеси излучений зависит только от их цвета, но не спектрального состава. То есть цвет (С) смеси выражается суммой цветовых уравнений излучений:

Cсумм=(R1+R2+…+Rn)R+(G1+G2+…+Gn)G+ (B1+B2+…+Bn)B.

Цветовая модель RGB

Монитор компьютера создает цвет непосредственно излучением света и, использует схему цветов RGB.

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов – красного (Red), зеленого (Green), синего (Blue). Она служит основой при создании и обработке компьютерной графики, предназначенной для электронного воспроизведения (на мониторе, телевизоре). Если с близкого расстояния посмотреть на экран монитора, то можно заметить, что он состоит из мельчайших точек красного, зелёного и синего цветов. Компьютер может управлять количеством света, излучаемого через любую окрашенную точку и, комбинируя различные сочетания любых цветов, может создать любой цвет. При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому – максимальные, с координатами (255,255,255).

Будучи определена природой компьютерных мониторов, схема RGB является самой популярной и распространённой, но у неё есть недостаток: компьютерные рисунки не всегда должны присутствовать только на мониторе, иногда их приходится распечатывать, тогда необходимо использовать другую систему цветов - CMYK.

Системы цветов HSB и HSL

Системы цветов HSB и HSL базируется на ограничениях, накладываемых аппаратным обеспечением. В системе HSB описание цвета представляется в виде тона, насыщенности и яркости. В другой системе HSL задаётся тон, насыщенность и освещённость. Тон представляет собой конкретный оттенок цвета. Насыщенность цвета характеризует его относительную интенсивность или частоту. Яркость или освещённость показывают величину чёрного оттенка добавленного к цвету, что делает его более тёмным. Система HSB хорошо согласовывается с моделью восприятия цвета человеком, то есть он является эквивалентом длины волны света. Насыщенность - интенсивность волны, а яркость - общее количество света. Недостатком этой системы является то, что для работы на мониторах компьютера её необходимо преобразовать в систему RGB, а для четырехцветной печати в систему CMYK.

Цветовая модель HSB

Цветовая модель HSB разработана с максимальным учетом особенностей восприятия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue), насыщенностью (Saturation) и яркостью (Brigfitness). Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности – чистым спектральным цветам. Направление вектора задается в градусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической, задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекрывает все известные значения реальных цветов.

Модель HSB принято использовать при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специальные программы, имитирующие кисти, перья, карандаши. Обеспечивается имитация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от предполагаемого способа публикации.

Цветовая модель CIE Lab

В 1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I"Eclairage – международная комиссия по совещанию. L, a, b – обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.

Цветовая модель CMYK, цветоделение

Данная система была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Для разделения цветов изображения на цвета CMYK применяют компьютеры, а для полиграфии разработаны их специальные модели. Преобразование цветов из системы RGB в систему CMYK сталкивается с рядом проблем. Основная сложность заключается в том, что в разных системах цвета могут меняться. У этих систем различна сама природа получения цветов и то, что мы видим на экране мониторов никогда нельзя точно повторить при печати. В настоящее время существуют программы, которые позволяет работать непосредственно в цветах CMYK. Программы векторной графики уже надёжно обладают этой способностью, а программы растровой графики лишь в последнее время стали предоставлять пользователям средства работы с цветами CMYK и точного управления тем, как рисунок будет выглядеть при печати.

Цветовая модель CMYK относится к субтрактивным, и ее используют при подготовке публикаций к печати. Цветовыми компонентами CMY служат цвета, полученные вычитанием основных из белого:

голубой (cyan) = белый - красный = зеленый + синий;

пурпурный (magenta) = белый - зеленый = красный + синий;

желтый (yellow) = белый - синий = красный + зеленый.

Такой метод соответствует физической сущности восприятия отраженных от печатных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополнительными, потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY – наложение друг на друга дополнительных цветов на практике не дает чистого черного цвета. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blacK). Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением. В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.

Индексированный цвет, работа с палитрой

Все описанные ранее системы цветов имели дело со всем спектром цветов. Индексированные палитры цветов - это наборы цветов, из которых можно выбрать необходимый цвет. Преимуществом ограниченных палитр является то, они что занимают гораздо меньше памяти, чем полные системы RGB и CMYK. Компьютер создаёт палитру цветов и присваивает каждому цвету номер от 1 до 256. Затем при сохранении цвета отдельного пиксела или объекта компьютер просто запоминает номер, который имел этот цвет в палитре. Для запоминания числа от 1 до 256 компьютеру необходимо всего 8 бит. Для сравнения полный цвет в системе RGB занимает 24 бита, а в системе CMYK - 32.

Список используемой литературы:

1.Компьютерная графика. Порев В.Н,

2.Основы компьютерной графики. Сергеев А. П., Кущенко С.В

3. Компьютерная графика. Динамика, реалистические изображения. Е.В.Шикин, А.В.Боресков

Компьютерная графика (11)Реферат >> Информатика

2 ВИДЫ КОМПЬЮТЕРНОЙ ГРАФИКИ Различают три вида компьютерной графики . Это растровая графика , векторная графика и фрактальная графика . Они отличаются... трехмерной системы координат. Каждая координата отражает вклад каждой составляющей в результирующий цвет в...

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Схема № 1. Комплементарное сочетание

Комплементарными, или дополнительными, контрастными, являются цвета, которые расположены на противоположных сторонах цветового круга Иттена. Выглядит их сочетание очень живо и энергично, особенно при максимальной насыщенности цвета.

Схема № 2. Триада - сочетание 3 цветов

Сочетание 3 цветов, лежащих на одинаковом расстоянии друг от друга. Обеспечивает высокую контрастность при сохранении гармонии. Такая композиция выглядит достаточно живой даже при использовании бледных и ненасыщенных цветов.

Схема № 3. Аналогичное сочетание

Сочетание от 2 до 5 цветов, расположенных рядом друг с другом на цветовом круге (в идеале - 2–3 цвета). Впечатление: спокойное, располагающее. Пример сочетания аналогичных приглушенных цветов: желто-оранжевый, желтый, желто-зеленый, зеленый, сине-зеленый.

Схема № 4. Раздельно-комплементарное сочетание

Вариант комплементарного сочетания цветов, только вместо противоположного цвета используются соседние для него цвета. Сочетание основного цвета и двух дополнительных. Выглядит эта схема почти настолько же контрастно, но не настолько напряженно. Если вы не уверены, что сможете правильно использовать комплементарные сочетания, - используйте раздельно-комплементарные.

Схема № 5. Тетрада - сочетание 4 цветов

Цветовая схема, где один цвет - основной, два - дополняющие, а еще один выделяет акценты. Пример: сине-зеленый, сине-фиолетовый, красно-оранжевый, желто-оранжевый.

Схема № 6. Квадрат

Сочетания отдельных цветов

  • Белый: сочетается со всем. Наилучшее сочетание с синим, красным и черным.
  • Бежевый: с голубым, коричневым, изумрудным, черным, красным, белым.
  • Серый: с цветом фуксии, красным, фиолетовым, розовым, синим.
  • Розовый: с коричневым, белым, цветом зеленой мяты, оливковым, серым, бирюзовым, нежно-голубым.
  • Фуксия (темно-розовый): с серым, желто-коричневым, цветом лайма, зеленой мяты, коричневым.
  • Красный: с желтым, белым, бурым, зеленым, синим и черным.
  • Томатно-красный: голубой, цвет зеленой мяты, песчаный, сливочно-белый, серый.
  • Вишнево-красный: лазурный, серый, светло-оранжевый, песчаный, бледно-желтый, бежевый.
  • Малиново-красный: белый, черный, цвет дамасской розы.
  • Коричневый: ярко-голубой, кремовый, розовый, палевый, зеленый, бежевый.
  • Светло-коричневый: бледно-желтый, кремово-белый, синий, зеленый, пурпурный, красный.
  • Темно-коричневый: лимонно-желтый, голубой, цвет зеленой мяты, пурпурно-розовый, цветом лайма.
  • Рыжевато-коричневый: розовый, темно-коричневый, синий, зеленый, пурпурный.
  • Оранжевый: голубой, синий, лиловый, фиолетовый, белый, черный.
  • Светло-оранжевый: серый, коричневый, оливковый.
  • Темно-оранжевый: бледно-желтый, оливковый, коричневый, вишневый.
  • Желтый: синий, лиловый, светло-голубой, фиолетовый, серый, черный.
  • Лимонно-желтый: вишнево-красный, коричневый, синий, серый.
  • Бледно-желтый: цвет фуксии, серый, коричневый, оттенки красного, желтовато-коричневый, синий, пурпурный.
  • Золотисто-желтый: серый, коричневый, лазурный, красный, черный.
  • Оливковый: апельсиновый, светло-коричневый, коричневый.
  • Зеленый: золотисто-коричневый, оранжевый, салатный, желтый, коричневый, серый, кремовый, черный, сливочно-белый.
  • Салатный цвет: коричневый, желтовато-коричневый, палевый, серый, темно-синий, красный, серый.
  • Бирюзовый: цвет фуксии, вишнево-красный, желтый, коричневый, кремовый, темно-фиолетовый.
  • Электрик красив в сочетании с золотисто-желтым, коричневым, светло-коричневым, серым или серебряным.
  • Голубой: красный, серый, коричневый, оранжевый, розовый, белый, желтый.
  • Темно-синий: светло-лиловый, голубой, желтовато-зеленый, коричневый, серый, бледно-желтый, оранжевый, зеленый, красный, белый.
  • Лиловый: оранжевый, розовый, темно-фиолетовый, оливковый, серый, желтый, белый.
  • Темно-фиолетовый: золотисто-коричневый, бледно-желтый, серый, бирюзовый, цвет зеленой мяты, светло-оранжевый.
  • Черный универсален, элегантен, смотрится во всех сочетаниях, лучше всего с оранжевым, розовым, салатным, белым, красным, сиреневатым или желтым.