Ультразвуковой излучатель. Инфразвуковой излучатель для шумных соседей

Ультразвуковой излучатель. Инфразвуковой излучатель для шумных соседей
Ультразвуковой излучатель. Инфразвуковой излучатель для шумных соседей

УЗ излучатель - это генератор мощных ультразвуковых волн. Как мы знаем, ультразвуковую частоту человек не слышит, но организм чувствует. Иными словами ультразвуковая частота воспринимается человеческим ухом, но определенный участок мозга, отвечающий за слух, не может расшифровать данные звуковые волны. Те, кто занимаются построением аудио систем должны знать, что высокая частота очень неприятна для нашего слуха, но если поднять частоту на еще высокий уровень (УЗ диапазон) то звук исчезнет, но на самом деле он есть. Мозг попытается безуспешно раскодировать звук, в следствии этого возникнет головная боль, тошнота, рвота, головокружение и т.п.

Ультразвуковая частота давно применяется в самых разных областях науки и техники. При помощи ультразвука можно сваривать металл, провести стирку и многое другое. Ультразвук активно применяется для отпугивания грызунов в сельскохозяйственной технике, поскольку организм многих животных приспособлен к общению с себе подобными на УЗ диапазоне. Есть данные и про отпугивание насекомых с помощью УЗИ генераторов, многие фирмы выпускают такие электронные репелленты. А мы предлагаем вам самостоятельно собрать такой прибор, по приведённой схеме:

Рассмотрим конструкцию достаточно простой УЗ пушки высокой мощности. Микросхема D4049 работает в качестве генератора сигналов ультразвуковой частоты, она имеет 6 логических инверторов.


Микросхему можно заменить на отечественный аналог К561ЛН2. Регулятор 22к нужен для подстройки частоты, ее можно снижать до слышимого диапазона, если резистор 100к заменить на 22к, а конденсатор 1,5нФ заменить на 2,2-3,3нФ. Сигналы с микросхемы подаются на выходной каскад, который построен всего на 4-х биполярных транзисторах средней мощности. Выбор транзисторов не критичен, главное подобрать максимально близкие по параметрам комплементарные пары.


В качестве излучателя можно использовать буквально любые ВЧ головки с мощностью от 5 ватт. Из отечественного интерьера можно использовать головки типа 5ГДВ-6, 10ГДВ-4, 10ГДВ-6. Такие ВЧ головки можно найти в акустических системах производства СССР.


Осталось только оформить все в корпус. Для направленности УЗ сигнала нужно использовать металлический рефлектор.

Необходим для очень широкого спектра девайсов - отпугивателей мышей, комаров, собак. Или просто в качестве ультразвуковой стиральной машинки. Так-же с данным EPU можно ставить интересные опыты и эксперименты (товарищи добавляют: в том числе и с соседями:)). Может использоваться для сокращения времени травления и промывки печатных плат, уменьшения времени замачивания белья. Ускорение протекания химических процессов в жидкости, облучённой ультразвуком, происходит благодаря явлению кавитации — возникновению в жидкости множества пульсирующих пузырьков, заполненных паром, газом или их смесью и звукокапиллярному эффекту. Ниже представлена схема ультразвукового генератора переменной частоты, взятая из журнала "Радиоконструктор".

Основу схемы составляют два генератора импульсов прямоугольной формы и мостовой усилитель мощности. На логических элементах DD1.3, DD1.4 выполнен перестраиваемый генератор импульсов формы меандр ультразвуковой частоты. Его рабочая частота зависит от ёмкости конденсатора С3 и общего сопротивления резисторов R6, R4. Чем сопротивление этих резисторов больше, тем частота меньше. На элементах DD1.1, DD1.2 сделан НЧ генератор с рабочей частотой около 1 Гц. Оба генератора связаны между собой через резисторы R3, R4. Конденсатор С2 предназначен для того, чтобы частота высокочастотного генератора изменялась плавно. Если конденсатор С2 зашунтировать переключателем SA1, то частота высокочастотного генератора будет постоянной. На микросхеме DD2 и полевых транзисторах выполнен мостовой усилитель мощности импульсов. Инверторы микросхемы раскачивают двухтактные повторители на полевых транзисторах. Когда на выводах 3, 6 DD2 лог. О, то на выходах DD2.3, DD2.4 будет лог. 1. Соответственно, в этот момент времени будут открыты транзисторы VT1, VT4, a VT2, VT4 будут закрыты. Использование сигнала прямоугольной формы приводит к богатому гармониками акустическому излучению. В качестве излучателей ультразвука используются две высокочастотные динамические головки типа 2ГД-36-2500. Можно использовать и 6ГД-13 (6ГДВ-4-8), ЭГД-31 (5ГДВ-1-8) и другие аналогичные. При возможности, их желательно заменить мощным пьезокерамическим излучателем или магнитостриктором, который можно попробовать изготовить самостоятельно, намотав на ферритовом П-образном сердечнике от ТВС телевизора несколько десятков витков многожильного медного провода, а в качестве мембраны применить небольшую стальную пластину. Катушка должна быть размещена на массивной опоре. Р-канальные полевые транзисторы можно заменить на IRF5305, IRF9Z34S, IRF5210; п-канальные — IRF511, IRF541, IRF520, IRFZ44N, IRFZ48N. Транзисторы устанавливаются на радиаторы. Микросхемы можно заменить на 564ЛА7, CD4011A, К561ЛЕ5, КР1561ЛЕ5, CD4001B. Дроссель L1 — любой миниатюрный индуктивностью 220.... 1000 мкГн. Резисторы R7, R8 — самодельные проволочные. Переменный резистор СП3-30, СП3-3-33-32 или с выключателем питания СП2-33-20. Печатную качаем в архиве.

Настройка. Движок переменного резистора R5 устанавливается в среднее положение, контакты выключателя SA1 замыкаются, подбором ёмкости конденсатора С3 и сопротивления резистора R6 устанавливается частота генератора на DD1.3, DD1.4 около 30 кГц. Далее, контакты SA1 размыкаются и подбором сопротивлений резисторов R2, R3 и R4 следует установить девиацию ультразвуковой частоты от 24 кГц до 35...45 кГц. Делать её более широкой не следует, так как или работа устройства станет слышимой человеком, либо заметно возрастут потери на переключение полевых транзисторов, а эффективность излучателей звука упадёт. Срыв работы генератора на DD1.3, DD1.4 не допускается, так как это может привести к повреждению катушек динамических головок. Источник питания должен быть рассчитан на ток не менее 2 А. Напряжение питания может быть от 11 до 13 вольт.

Сегодня собрал такую схему ультразвукового излучателя - работает не очень, но! Немного пораскинув умом, пришел к выводу о необходимости повысить ёмкость С3 до 2200 пф, далее естественно была устранена ошибка в схеме - в элементе DD2.2 выводы 4 и 6 перепутаны. И о чудо - работает. Правда долго выдержать этот пронзительный звук, меняющийся в широком диапазоне не представляется возможным даже тем, кто находится и в других комнатах. Голова начинает даже не болеть, а её как будто в тиски жмёт, до тошноты противное состояние, выдержал секунд 30.

Ток потребления можно рассчитать исходя из сопротивления применяемого ультразвукового излучателя, закон Ома помнят думаю все. К примеру, у меня стоит на 16 Ом, приняв за КПД 100% оконечного каскада, что почти так и есть, получаем 750 мА при напряжении питания 12 В. Напряжение менять не стоит, иначе упадет мощность, да и смысл уменьшать? Свой ультразвуковой излучатель питаю от кренки на 12 В. При перепадах напряжения частота более менее стабильна получается. Диапазон выходных частот варьирует в широком пределе переменным резистором от слышимого спектра - до не слышимого, необходимо лишь правильно подобрать скважность импульсов для правильной работы схемы. Устройство собрал и испытал: ГУБЕРНАТОР.

Для генерации ультразвука применяются специальные излучатели магнитострикционного типа. К основным параметрам устройств относится сопротивление и проводимость. Также учитывается допустимая величина частоты. По конструкции устройства могут отличаться. Также надо отметить, что модели активно применяются в эхолотах. Чтобы разобраться в излучателях, важно рассмотреть их схему.

Схема устройства

Стандартный магнитострикционный излучатель ультразвука состоит из подставки и набора клемм. Непосредственно магнит подводится на конденсатор. В верхней части устройства имеется обмотка. У основания излучателей часто устанавливается зажимное кольцо. Магнит подходит только неодимового типа. В верхней части моделей располагается стержень. Для его фиксации применяется кольцо.

Кольцевая модификация

Кольцевые устройства работают при проводимости от 4 мк. Многие модели производятся с короткими подставками. Также надо отметить, что существуют модификации на полевых конденсаторах. Чтобы собрать магнитострикционный излучатель своими руками, применяется обмотка соленоида. При этом клеммы важно устанавливать низкого порогового напряжения. Ферритовый стрежень целесообразнее подбирать небольшого диаметра. Зажимное кольцо ставится в последнюю очередь.

Устройство с яром

Сделать магнитострикционный излучатель своими руками довольно просто. В первую очередь заготавливается стойка под стержень. Далее важно вырезать подставку. Для этого можно использовать металлический диск. Специалисты говорят о том, что подставка в диаметре должна быть не более 3.5 см. Клеммы для устройства подбираются на 20 В. В верхней части модели фиксируется кольцо. При необходимости можно намотать изоленту. Показатель сопротивления у излучателей данного типа находится в районе 30 Ом. Работают они при проводимости не менее 5 мк. Обмотка в данном случае не потребуется.

Модель с двойной обмоткой

Устройства с двойной обмоткой производятся разного диаметра. Проводимость у моделей находится на отметке 4 мк. Большинство устройств обладает высоким волновым сопротивлением. Чтобы сделать магнитострикционный излучатель своими руками, используется только стальная подставка. Изолятор в данном случае не потребуется. Ферритовый стержень разрешается устанавливать на подкладку. Специалисты рекомендуют заранее заготовить уплотнительное кольцо. Также надо отметить, что для сборки излучателя потребуется конденсатор полевого типа. Сопротивление на входе у модели должно составлять не более 20 Ом. Обмотки устанавливаются рядом со стержнем.

Излучатели на базе отражателя

Излучатели данного типа выделяются высокой проводимостью. Работают модели при напряжении 35 В. Многие устройства оснащаются полевыми конденсаторами. Сделать магнитострикционный излучатель своими руками довольно проблематично. В первую очередь надо подобрать стержень небольшого диаметра. При этом клеммы заготавливаются с проводимостью от 4 мк.

Волновое сопротивление в устройстве должно составлять от 45 Ом. Пластина устанавливается на подставке. Обмотка в данном случае не должна соприкасаться с клеммами. В нижней части устройства обязана находиться круглая подставка. Для фиксации кольца часто применяется обычная изолента. Конденсатор напаивается над манганитом. Также надо отметить, что кольца иногда применяются с накладками.

Устройства для эхолотов

Для эхолотов часто используется магнитострикционный излучатель УЗ. Как приготовить модель своими руками? Самодельные модификации производятся с проводимостью от 5 мк. у них в среднем равняется 55 Ом. Чтобы изготовить мощный ультразвуковой стержень применяется на 1.5 см. Обмотка соленоида накручивается с малым шагом.

Специалисты говорят о том, что стойки под излучатели целесообразнее подбирать из нержавейки. При этом клеммы применяются с малой проводимостью. Конденсаторы подходят разного типа. у излучателей находится на отметке 14 Вт. Для фиксации стержня используются резиновые кольца. У основания устройства накручивается изолента. Также стоит отметить, что магнит надо устанавливать в последнюю очередь.

Модификации для рыболокаторов

Устройства для рыболокаторов собираются только с проводными конденсаторами. Для начала требуется установить стойку. Целесообразнее применять кольца диаметром от 4.5 см. Обмотка соленоида обязана плотно прилегать к стержню. Довольно часто конденсаторы припаиваются у основания излучателей. Некоторые модификации производятся на две клеммы. Ферритовый стрежень обязан фиксироваться на изоляторе. Для укрепления кольца используется изолента.

Модели низкого волнового сопротивления

Устройства низкого волнового сопротивления работают при напряжении 12 В. У многих моделей имеются два конденсатора. Чтобы собрать прибор, генерирующий ультразвук, своими руками, потребуется стержень на 10 см. При этом конденсаторы на излучатель устанавливаются проводного типа. Обмотка накручивается в последнюю очередь. Также надо отметить, что для сборки модификации потребуется клемма. В некоторых случаях используются полевые конденсаторы на 4 мк. Параметр частоты будет довольно высокий. Магнит целесообразнее устанавливаться над клеммой.

Устройства высокого волнового сопротивления

Излучатели ультразвука высокого сопротивления хорошо подходят для приемников короткой волны. Собрать самостоятельно устройство можно только на базе переходных конденсаторов. При этом клеммы побираются высокой проводимости. Довольно часто магнит устанавливается на стойке.

Подставка для излучателя применяется малой высоты. Также надо отметить, что для сборки устройства используются один стрежень. Для изоляции его основания подойдет обычная изолента. В верней части излучателя обязано находиться кольцо.

Стержневые устройства

Схема стержневого типа включает в себя проводник с обмоткой. Конденсаторы разрешается применять разной емкости. При этом они могут отличаться по проводимости. Если рассматривать простую модель, то подставка заготавливается круглой формы, а клеммы устанавливаются на 10 В. Обмотка соленоида накручивается в последнюю очередь. Также надо отметить, что магнит подбирается неодимового типа.

Непосредственно стержень применяется на 2.2 см. Клеммы можно устанавливать на подкладке. Также надо упомянуть о том, что существуют модификации на 12 В. Если рассматривать устройства с полевыми конденсаторами высокой емкости, то минимальный диаметр стержня допускается 2.5 см. При этом обмотка должна накручиваться до изоляции. В верхней части излучателя устанавливается защитное кольцо. Подставки разрешается делать без накладки.

Модели с однопереходными конденсаторами

Излучатели данного типа выдают проводимость на уровне 5 мк. При этом показатель волнового сопротивления у них максимум доходит до 45 Ом. Для того чтобы самостоятельно изготовить излучатель, заготавливается небольшая стойка. В верхней части подставки обязана находиться накладка из резины. Также надо отметить, что магнит заготавливается неодимового типа.

Специалисты советуют устанавливать его на клей. Клеммы для устройства подбираются на 20 Вт. Непосредственно конденсатор устанавливается над накладкой. Стержень используется диаметром в 3.3 см. В нижней части обмотки должно находиться кольцо. Если рассматривать модели на два конденсатора, то стержень разрешается использовать с диаметром 3.5 см. Обмотка должна накручиваться до самого основания излучателя. В нижней части стоки клеится изолента. Магнит устанавливается в середине стойки. Клеммы при этом должны находиться по сторонам.

Всегда считалось, что мой дом является моей крепостью. Однако, появляются моменты, когда попросту находится в собственной квартире невозможно.

Доставлять неудобства может многое: шумные ремонтные работы в соседней квартире, очень громкая музыка и, естественно, пьяный дебош сверху каждую ночь на протяжении длительного периода времени.

Шум, который продолжается круглые сутки, заставляет сразу же искать хоть какое-нибудь решение о его устранении. Однако, не каждому известно, как побороть шумных соседей.

В Федеральном законе говорится, что уровень шума не должен превышать 40 дБ в период с семи часов утра до одиннадцати часов вечера, а вот ночью эта цифра не должна выходить за рамки 30 дБ.

Если брать хоть какое-то сравнение, то все звуки должны быть в три раза тише автомобильной сигнализации. Но все же не стоит забывать, что в каждом регионе могут быть внесены поправки в данный закон.

Если же нормы нарушаются пользователями жилых помещений, все действия со стороны недобросовестных соседей переходят в разряд административного нарушения.

Однако, случается, что в то время, как существуют законы они, к сожалению, не выполняются. В таком случае есть пара вариантов для решения проблемы.

Когда помехой является очень громкая музыка, можно постараться договориться мирным путем. Этот способ, несомненно, считается самым лучшим в тот момент, если все участники данного конфликта находятся в адекватном состоянии.

Можно пояснить, что у вас в квартире есть ребенок малого возраста и днем ему надо отдыхать, а вот вечером он должен лечь спасть в девять. Можно пойти на компромисс и понять друг друга.

В том случае, когда мирные переговоры так и не пошли на пользу, можно пойти к участковому, которому положено разобраться в данной ситуации по просьбе заявителя. Если же в соседской квартире происходит пьяный дебош, то лучше всего не лезть в него, так как есть возможность пострадать. В данном случае должны вмешаться органы правопорядка, которые сразу приедут на место по вызову и устранят конфликт.

Соседи делают ремонт

Все ремонтные работы, являются отдельной темой. Проводя работы с использованием дрели человек честно думает, что ничего плохого он не делает, так как время рабочее, а значит и закон не нарушается.

Но в некоторых случаях такого рода шум может потревожить и старушку, у которой разыгралась мигрень и разбудить маленького ребенка. В таком случае пожаловаться нельзя, так как закон на самом деле не нарушен.

Если человек воспитанный, то вы самостоятельно можете решить вопрос о времени проведения им самых шумных ремонтных работ, что даст возможность на этот период времени пойти с ребенком гулять или же не ложиться спать в данное время, а попросту его перенести.

Просьба о помощи

Так что же делать, если шум продолжается, а договориться никак не получается? Следует заметить, что приход участкового зачастую попросту не дает тех результатов, что хотелось бы. Очень часто данный момент зависит от того, насколько процветает коррупция на данном участке и, конечно же, от личности нарушителя.

В том случае, когда участковый не предпринимает никаких мер по заявлению или же ничего не меняется после его прихода, следует обращаться напрямую в прокуратуру, которая следит за тем, как соблюдаются законы. Там обязательно должны разобраться и ответ вам придет в письменном виде.

Если же и тут не помогли, тогда остается только суд. Если подается исковое заявление, то должны быть весомые доказательства того, что вам действительно невозможно отдохнуть в своей квартире из-за шумных соседей.

Как повлияет запрос в ЖЭС?

Есть еще одна инстанция в которую можно обратиться с жалобой на особо шумных соседей сверху, которым так и хочется насолить. Туда следует обращаться в том случае, если действительно не происходит никаких противоправных действий, которыми является дебош.

К примеру, постоянно где-то лает собака или же просто громкая музыка у соседа сверху. В данных случаях допустимо обращение в ЖЭС. Как правило, сотрудники такого учреждения говорят о том, что возможно провести какую-то беседу, однако не факт, что им откроют квартиру. Поэтому проще позвонить в полицию.

Однако и сотрудники полиции не спешат на помощь, так как их позиция выезда настроена только на противоправные действия, а громкая музыка это работа ЖЭСа. И вот когда круг замкнут, следует думать об альтернативных методах.

Бывают исключения

В законе о тишине есть пункты, на которые могут не распространяться ограничения во времени.

Не входят такие пункты, как:

  • Плачет маленький заболевший ребенок;
  • Мяукает кот или же лает собака;
  • Звонят в церкви колокола;
  • Проведение мероприятий и праздников на улице;
  • Спасательные или аварийные работы, сопровождающиеся шумом.

Последствия для нарушителей

После того, как было предъявлено первое предупреждение, а эффекта не последовало, далее предусматривается административный штраф. Его величина будет зависеть только напрямую от того, кто послужил поводом для беспокойства – физическое лицо или юридическое.

В дополнении закона говорится, что могут быть привлечены к выплате штрафа и те, кто любит поставить усилитель на балкон. В законе есть четкие критерии нарушения тишины, за которые придется заплатить штраф:

  1. Работы строительные и ремонтные ночью;
  2. Использование пиротехники и фейерверков;
  3. Прослушивание громкой музыки при применении усилителей;
  4. Свист, громкие крики и другое.

Самостоятельная помощь

В том случае, когда никакие методы уже не помогают бороться с шумными соседями, можно попросту сделать ремонт, применяя материалы имеющие повышенные звукоизолирующие свойства.

Однако, это не всегда является выходом. Да и дело достаточно хлопотное. Можно попробовать применить инфразвук.

Что такое инфразвук?

Инфразвуком принято называть упругие волны, которые являются аналогами звуковых, но обладающие более низкими частотами, которые не слышит человек. Верхняя граница диапазона инфразвука является 16-25 Гц.

До сих пор не выявлена нижняя граница. На самом деле инфразвук присутствует во всем: и в атмосфере и в лесах и даже в воде.

Действия инфразвука

Инфразвуковые действия происходят за счет резонанса, который является частотой колебания большого количества процессов в организме. Альфа, бета и дельта-ритмы мозга тоже происходят на чистоте инфразвука, как, в принципе, и биение сердца.

Инфразвуковые колебания могут совпадать с колебаниями в теле. Впоследствии последние усиливаются, за счет чего происходит сбой работы какого-то органа. Может дело дойти не только до травмы, но также и до разрыва.

Частота колебаний в человеческом организме варьируется от 8 до 15 герц. В то время, когда на человека происходит воздействие звуковым излучением, все физические колебания могут попасть в резонанс, а вот амплитуда микросудорог увеличится во много раз.

Естественно, ощущение того, что воздействует, человек не сумеет понять, ведь звука не слышно. Однако присутствует некое состояние тревожности. Если же происходит крайне длительное и активное воздействие особого звука на весь человеческий орган, то происходят разрывы внутренних сосудов, а также капилляров.

Тайфун, землетрясение и вулканическое извержение излучают частоту в 7-13 герц, что дает призыв человеку быстро ретироваться с места, где происходят бедствия. Инфразвук и ультразвук очень легко может довести человека до самоубийства.

Очень опасным промежутком звука является частота в 6-9 герц. Очень сильные психотронные эффекты более всего оказываются на частоте в 7 герц, которая является аналогичной природному колебанию мозга.

В такой момент любая работа умственного характера попросту становится невозможной, так как есть ощущение того, что голова в любой момент может «лопнуть, как арбуз». Если же идет не сильное воздействие, тогда просто звенит в ушах и появляется чувство тошноты, ухудшается зрение и человек поддается безотчетному страху.

Звук, который имеет среднюю интенсивность, может расстроит пищеварительные органы, мозг, породить паралич слепоту и общую слабость. Сильное воздействие повреждает или же полностью приводит к остановке сердца.

Ультразвуковой излучатель

Можно самостоятельно соорудить инфразвуковой излучатель, который не будет приносить никакого вреда человеческому организму, однако нежелательное соседство станет менее шумным после его применения.

Конструкция ультразвука

Схема такова: самый простой генератор для создания колебаний запускается от катушки, которая имеется в динамике для звука. Реле необходимо для запуска конденсатора. Если подтолкнуть динамик для подачи звука и вовсе отключится.

Далее схема начинает работу на резонансной частоте катушки. Также нужны транзисторы, которые будут низкочастотными и выдавать определенную мощность звука. В качестве питания применяется девятивольтный бэпэшник от нерабочего модема.

Резисторы R2 и R4, являются регуляторами громкости. Схема производит работу на маятниковом резонансе. Однако вся электрика берет примерно два ватта, а вот на выходе около двадцати, поэтому динамик без них никак не работает.

Подойдет любой звуковой динамик НЧ. Обязательное условие – ставить в корпусе, так как в таком случае исключается акустическое «короткое замыкание». В виде корпуса прекрасно подходит кастрюля. У динамика для звука, при использовании электоролобзика, спиливаются уши, затем он втыкается в ведро и по периметру склеивается «моментом».

Настройка инфразвукового устройства

Изначально вся система собирается на столе и целиком проверяется вся электрика. Изначально это надо сделать без утяжелителя. После включения, динамик должен начать гудеть на частоте резонанса.

Если же сразу не выходит, стоит поработать с емкостью конденсатора. Затем собирается весь прибор в кастрюлю, проклеиваются «моментом» все щели между динамиком и корпусом, а потом следует промазать клеем спираль утяжелителя и на него же приклеить к диффузору динамика для звука.

Если же нет возможности найти нормальный чистомер, следует настроить частоту ультразвука в 13 Гц при использовании осциллографа и генератора НЧ по фигуре Лиссажу. Затем включается питание для проверки на несколько секунд, чтобы посмотреть, что получилось. Далее прибор выключается и начинается обрезание спиральки утяжелителя до того, пока не получится двойной Лиссажу.

Погружной ультразвуковой преобразователь это устройство, предназначенное для передачи в жидкую среду ультразвуковых колебаний, содержащие герметичный корпус с диафрагмой, являющейся частью поверхности этого корпуса, внутри которого расположены и закреплены на диафрагме пьезоэлектрические излучатели, электроды, которых электрически соединены с высокочастотным кабелем, служащим для подачи на пьезоэлектрические излучатели высокочастотного электрического напряжения от генератора ультразвуковой частоты.

Используется для возбуждения в жидкой моющей среде ультразвуковой кавитации, обеспечивающей интенсификацию процессов очистки деталей от загрязнений. Применяются в ваннах для ультразвуковой очистки объемом свыше 50 л.

Рис.1 Погружной преобразователь
в У.З. ванне

Устройство ультразвукового погружного преобразователя схематично показана на рис.1.

Генератор подключается к сети 220 вольт 50 Гц и преобразует частоту напряжения до 25.000 гц (25 кГц) или 35 кГц. в зависимости от конструкции погружного преобразователя.

Высокочастотное напряжение подается по кабелю в герметичный корпус преобразователя, изготовленный из нержавеющей стали внутри которого смонтированы пьезоэлектрические излучатели, соединенные параллельно.

Рис.2 Устройство пьезоэлектрического излучателя

Пьезоэлектрический излучатель является основным узлом погружного ультразвукового преобразователя. Устройство этого излучателя показано на рис.2.

Излучатель имеет две пьезоэлектрических пластины (пьезоэлементы), расположенные между двумя металлическими накладками: стальной расположенной с задней стороны и алюминиевой - с передней.

Пьезоэлементы стянуты в одно целое с накладками посредством центрального болта. На центральный электрод, расположенный между пьезоэлементами, подается высокочастотное напряжение.

Пьезоэлектрический излучатель преобразует электрическую энергию в высокочастотные механические колебания, которые передаются диафрагме погружного преобразователя, от которой эти колебания передаются в моющую жидкость.

Количество пьезоэлектрических излучателей в погружном ультразвуковом преобразователе может составлять от 4-х до 11-ти и более штук.

Закрепляются пьезоэлектрические излучатели на диафрагме посредством клеевого соединения.

Рис.3 Погружной преобразователь

Общий вид ультразвукового погружного преобразователя с частично вырезанной задней крышкой показан на рис.3. Видно, что пьезоэлектрические излучатели расположены в несколько рядов по два в каждом ряду.

Погружные ультразвуковые преобразователи могут использоваться как в специально разработанных для них ваннах ультразвуковой очистки, так и в уже имеющихся у заказчика очистных ванны. Удобство этих преобразователей состоит в том, что они могут быть легко установлены в различные части объема ванны.

В отличие от ультразвуковых преобразователей, прочно прикрепленных к ванне очистки снизу или сбоку, погружные преобразователя могут быть заменены в течение нескольких минут.

Генератор для питания погружных преобразователей высокочастотным напряжением может располагаться от ультразвуковой ванны на расстоянии до 6 метров.

Способы монтажа погружных преобразователей в ванне ультразвуковой очистки

Погружные преобразователи могут быть размещены в ваннах для очистки тремя различными способами:

  1. размещением преобразователя на дне ванны;
  2. навешиванием на стенку ванны;
  3. креплением преобразователя на стенке ванны.

Рис.4 Размещение преобразователя в УЗ ванне

Первые два способа не требуют выполнения отверстий в стенке ванны.

Некоторые виды крепления погружного преобразователя в ванне для ультразвуковой очистки показаны на рис.4.

При размещении преобразователя на дне ванны надо учитывать высоту слоя моющего раствора над диафрагмой преобразователя.

Следует стремиться к тому, чтобы высота этого слоя была бы кратна половины длины волны ультразвуковых колебаний, передаваемых в моющий раствор погружным преобразователем.

В этом случае за счет отражения волн ультразвуковых колебаний от границы вода-воздух в моющем растворе создается зона стоячих волн (явление реверберации). При реверберации ультразвуковых волн в жидкости эффективность ультразвуковой очистки несколько выше.

В качестве примера определим оптимальную высоту этого слоя для конкретного погружного преобразователя.

Известно, что скорость звука в воде составляет 1485 м/сек. Длина волны ультразвуковых колебаний равна частному от деления скорости звука на частоту этих колебаний.

Предположим что мы имеем погружной ультразвуковой излучатель частота колебаний диафрагмы которого составляет 25 000 гц (25 кГц). Длина волна в этом случае будет 0,0594 м. Половина длины волны равна 0,0297 м. или 2,97 см. Оптимальная высота жидкости в этом случае над поверхностью погружного преобразователя должна быть 2,97см x n где n-любое целое положительное число.

Рис.5 Стоячие волны в УЗ ванне

Например, для n=40 оптимальная высота уровня моющего раствора над поверхностью погружного преобразователя составит 2,97х40=118.8 см. Изложенное выше иллюстрируется рис.5.

Размещение погружных ультразвуковых преобразователей на стенках ванны очистки рекомендуется в том случае, когда ее глубина более чем в два раза меньше ее ширины или длины. При этом преобразователи могут размещаться как на одной стенке ванны так и на ее противоположных стенках.

На видеоролике показано размещение погружных преобразователей на боковых стенках ванны и работа погружных ультразвуковых преобразователей, размещенных на дне ванны.

Погружные преобразователи в работе

Выбор оптимальной частоты для погружного преобразователя

При распространении в жидкости ультразвуковых колебаний возникает явление, называемое кавитацией, под которой понимается образование в жидкости кавитационных полостей в фазе разряжения звуковой волны и последующее ее захлопывание в фазе сжатия.

Рис.6 Влияние частоты на уз кавитацию

Поведение кавитационных полостей при изменении частоты колебаний показано на графике на рис.6.

По оси ординат с левой стороны показана величина энергии выделяемой при захлопывании единичной кавитационной полости (энергия кавитации) а по оси ординат справа показано число кавитационных полостей в единице объема жидкости.

Как видно из графика с увеличением частоты ультразвуковых колебаний количество кавитационных полостей в жидкости увеличивается, а энергия кавитации уменьшается.

С понижением частоты ультразвуковых колебаний число кавитационных полостей в жидкости уменьшается, а энергия кавитации увеличивается.

При этом для каждой частоты ультразвуковых колебаний произведение энергии выделяемой кавитационной полостью при ее захлопывании на число этих пузырьков в жидкости является величиной постоянной примерно равной энергии передаваемой в жидкость ультразвуковым погружным преобразователем.

Подробно влияние частоты ультразвуковых колебаний на количество кавитационных полостей рассмотрено на сайте

Для практики важно, чтобы число кавитационных полостей было бы как можно больше, но при этом энергия кавитации должна быть достаточной для удаления загрязнений. Таким образом, для очистки деталей от загрязнений непрочно связанных с поверхностью (жиры, масла) следует применять преобразователи с частотой 35-40 кГц а для очистки деталей от загрязнений прочно связанных с поверхностью (полировальные пасты, лаковые и полимерные пленки) следует применять погружные преобразователи с более низкой частотой 20-25 кГц.


сменить рисунок

Рис.7 УЗ ванна с преобразователями разной частоты

Наиболее оптимальным решением является создание таких уcловий, когда чиcло кавитационных полостей было бы велико и при этом энергия кавитации также была бы большой.

Эти условия реализуются в ванне ультразвуковой очистки с погружными преобразователями, расположенными на ее стенках, как показано на рис.7. Другой вариант расположения погружных преобразователей можно увидеть, если подвести курсор к этому рисунку.

В этом случае применяются два преобразователя с разными частотами колебаний 25 и 35 кГц. Преобразователь с частотой в 35 кГц обеспечивает создание в объеме моющей жидкости большего количества кавитационных полостей, а преобразователь с частотой в 25 кГц увеличивает энергию кавитации этих полостей.

Оптимальное количество погружных преобразователей для ванны очистки

При определении числа необходимых погружных преобразователей надо исходить из того, что максимальная эффективность ультразвуковой очистки достигается при ультразвуковой мощности 10...30 ватт на 1 литр объема ванны.

Так например, для ванны объемом 50 литров достаточно двух преобразователей модели ПП25.8 (см.таблицу ниже).

Для больших по объему ванн ультразвуковой очистки, например свыше 250 литров, удовлетворительные результаты достигаются и при ультразвуковой мощности 4.5 ватт на 1 литр объема ванны. Например, для ванны объемом 1000 л достаточно 11 преобразователей модели ПП25.8

В настоящее время на отечественном рынке имеется много конструкций ультразвуковых погружных преобразователей.

В таблице приведены технические характеристики погружных ультразвуковых преобразователей компании ООО ТНЦ Техносоник (Москва).

В данной статье не рассмотрены полностью все аспекты конструкции и использования погружных ультразвуковых преобразователей. Однако представленный материал может быть полезен для специалистов перед которыми впервые поставлены конкретные задачи по выбору оптимального варианта ультразвуковой ванны для очистки изделий.