Чем raid 5 лучше 0. Уровни RAID — краткие теоретические сведения

Чем raid 5 лучше 0. Уровни RAID — краткие теоретические сведения
Чем raid 5 лучше 0. Уровни RAID — краткие теоретические сведения

У энтузиастов есть неписаное правило: жёсткий диск Western Digital WD1500 Raptor является идеальной моделью для настольных ПК, если вам нужна максимальная производительность. Но по этому пути могут последовать далеко не все пользователи, поскольку тратить $240 на жёсткий диск ёмкостью всего 150 Гбайт - решение не очень привлекательное. Остаётся ли Raptor лучшим выбором? Цена не менялась уже многие месяцы, а сегодня за такие деньги можно легко купить пару 400-Гбайт накопителей. Не настало ли время сравнить производительность современных RAID массивов с Raptor?

Энтузиасты хорошо знакомы с жёсткими дисками Raptor, поскольку это единственный 3,5" жёсткий диск для настольных ПК, который вращается на скорости 10 000 об/мин. Большинство винчестеров в этом секторе рынка имеют скорость вращения 7 200 об/мин. Только дорогие жёсткие диски для серверов вращаются быстрее. Первые жёсткие диски WD Raptor на 36 и 74 Гбайт были представлены три года назад. Около года назад на рынок вышел Western Digital Raptor-X , который обеспечивает более высокую производительность, доступны также модели с прозрачной крышкой, которая позволяет заглянуть внутрь жёсткого диска.

Жёсткие диски Western Digital Raptor после своего выхода обошли все другие 3,5" винчестеры Serial ATA для настольных ПК, хотя изначально они позиционировались на недорогие серверы.

Скорость вращения шпинделя 10 000 об/мин даёт два существенных преимущества. Во-первых, скорость передачи данных заметно увеличивается. Да, максимальная последовательная скорость чтения не особо впечатляет, но минимальная скорость намного превосходит любые жёсткие диски на 7 200 об/мин. Кроме того, у жёсткого диска на 10 000 об/мин меньше задержки на вращение, то есть накопителю требуется меньшее время на получение данных после того, как головки чтения/записи будут позиционированы.

Главным недостатком WD Raptor является цена - около $240 за 150-Гбайт модель. Среди других недостатков отметим более высокий (хотя и не критичный) уровень шума и более высокое тепловыделение. Впрочем, энтузиасты легко смирятся с подобными недостатками, если этот жёсткий диск даст более высокую производительность подсистемы хранения данных.

Если посчитать стоимость хранения гигабайта данных, то Raptor будет уже не так привлекателен. За $240 можно взять пару 400-Гбайт жёстких дисков, да и до уровня $300 за 750-Гбайт Seagate Barracuda 7200.10 уже недалеко. Если обратить взор на дешёвый сегмент, то можно взять пару 160-Гбайт жёстких дисков на 7 200 об/мин по $50 каждый, которые обеспечат ту же ёмкость, что и Raptor, но более чем в два раза дешевле. Поэтому сегодня даже энтузиасты часто спрашивают себя: стоит ли брать WD Raptor, не лучше ли выбрать конфигурацию RAID 0 на двух жёстких дисках на 7 200 об/мин?

Массив RAID 0 не снижает время доступа, но зато он практически удваивает скорость последовательного чтения, так как данные распределяются между двумя жёсткими дисками. Недостатком можно считать повышенный риск потери данных, поскольку если один жёсткий диск выйдет из строя, то будет потерян весь массив (правда, сегодня существуют и варианты восстановления информации RAID ). Многие встроенные контроллеры на материнских платах верхнего ценового уровня поддерживают режимы RAID, которые легко настроить и установить.

Быстрый или разумный жёсткий диск?

Производительность Ёмкость Безопасность хранения данных Цена
Один винчестер (7 200 об/мин) Хорошая От достаточной до отличной Достаточная * От низкой к высокой, от $50 до $300
150-Гбайт WD Raptor (10 000 об/мин) Отличная Достаточная Достаточная * Высокая: $ 240+
2x 160 Гбайт (7 200 об/мин) От очень хорошей до отличной От хорошей до отличной Недостаточная * От низкой до высокой: от $50 за жёсткий диск
2x 150 Гбайт WD Raptor (10 000 об/мин) Отличная Хорошая Недостаточная * От высокой до очень высокой: от $240 за накопитель

* Следует помнить, что любой жёсткий диск рано или поздно выйдет из строя. Технология базируется на механических компонентах, а время жизни у них ограниченное. Производители указывают для жёстких дисков время наработки на отказ (MTBF, Mean Time Between Failures). Если вы установили массив RAID 0 на двух жёстких дисках на 7 200 об/мин, то риск потери данных увеличивается в два раза, поскольку при сбое одного винчестера вы потеряете весь массив RAID 0. Поэтому регулярно проводите резервирование важных данных и создавайте образ операционной системы.

Сегодня можно купить 40-80-Гбайт жёсткие диски чуть ли не за копейки, и если у вас нет особых требований по ёмкости, то такого объёма будет достаточно даже сегодня. Впрочем, мы рекомендуем брать жёсткие диски по цене $50-$70, поскольку вы можете легко взять модели с ёмкостью от 120 до 200 Гбайт. В интернет-магазинах уже начали появляться модели на 250 и 320 Гбайт по цене меньше $100. За те деньги, которые вы потратите на WD Raptor с 10 000 об/мин, можно легко получить ёмкость от 800 Гбайт до 1 Тбайт на жёстких дисках с 7 200 об/мин.

Если вам не нужна такая высокая ёмкость, можно довольствоваться жёсткими дисками на 7 200 об/мин начального уровня. Два накопителя WD1600AAJS от Western Digital обойдутся в $55 каждый, при этом вы легко получите ёмкость 320 Гбайт в массиве RAID 0. И потратите в два раза меньше денег, и получите в два раза большую ёмкость. Насколько оправдана подобная экономия? Давайте разберёмся.

7 200 или 10 000 об/мин? RAID 0 или Raptor?

Мы решили протестировать разные конфигурации жёстких дисков. В нашем тестировании участвуют одиночный WD Raptor WD1500ADFD, одиночный WD4000KD, Raptor в массиве RAID 0 и WD4000 в массиве RAID 0. Мы решили взять 400-Гбайт жёсткие диски WD на 7 200 об/мин, поскольку два таких винчестера примерно соответствуют по цене одному Raptor. Посмотрим, насколько хорошо "бюджетный" RAID-массив покажет себя по сравнению с одним Raptor.

WD4000KD оснащён 16 Мбайт кэша и имеет интерфейс Serial ATA/150. Основное отличие по сравнению с WD Raptor на 10 000 об/мин кроется в производительности и ёмкости. Raptor существенно уступает по стоимости хранения одного гигабайта, которая оказывается, как минимум, в шесть раз больше по сравнению с 400-Гбайт WD4000KD. Тесты покажут, насколько сильны различия в производительности. На момент публикации цена WD4000KD Caviar составляла $130.

Raptor - бесспорный чемпион по производительности на рынке настольных ПК, но это и самый дорогой жёсткий диск. WD1500 Raptor использует интерфейс Serial ATA/150, которого по-прежнему вполне достаточно. Если взглянуть на результаты тестов, то ни один другой жёсткий диск не может обойти Raptor, пусть даже с интерфейсом SATA 300 Мбайт/с. В общем, скорость интерфейса SATA не должна влиять на решение о покупке. На момент публикации цена WD1500ADFD Raptor составляла $240.

Данная конфигурация должна сразиться с WD1500 Raptor. Смогут ли два жёстких диска WD4000KD в массиве RAID 0 обойти Raptor?

Этот сценарий самый дорогой в нашем тестировании, поскольку он требует двух жёстких дисков WD Raptor, но он, тем не менее, очень интересен. Два жёстких диска Raptor на 10 000 об/мин в массиве RAID 0 должны "порвать" буквально всех.

RAID 0

Производительность

В теории RAID 0 является идеальным решением для увеличения производительности, поскольку последовательная скорость передачи информации практически линейно масштабируется с ростом числа жёстких дисков в массиве. Файлы распределяются поблочно по всем жёстким дискам, то есть RAID-контроллер записывает данные практически одновременно на несколько винчестеров. Скорость передачи данных RAID 0 заметно возрастает почти во всех сценариях, хотя время доступа и не уменьшается. В реальных тестах время доступа в массивах RAID 0 даже увеличивается, хотя и очень незначительно, примерно на половину миллисекунды.

Если построить конфигурацию RAID на нескольких жёстких дисках, "узким местом" может стать контроллер накопителей. Обычная шинная PCI позволяет передавать, максимум, 133 Мбайт/с, что легко поглощается двумя современными жёсткими дисками. Контроллеры Serial ATA, которые входят в чипсет, дают, как правило, более высокую пропускную способность, поэтому они не ограничивают производительность массивов RAID.

Мы получили до 350 Мбайт/с на четырёх жёстких дисках WD Raptor с 10 000 об/мин на чипсетах с южными мостами Intel ICH7 и ICH8 . Великолепный результат, который очень близок к суммарной пропускной способности четырёх отдельных жёстких дисков. В то же время, чипсет nVidia nForce 680 показал максимум в 110 Мбайт/с, увы. Похоже, что не каждый интегрированный RAID-контроллер способен обеспечить высокую производительность массивов RAID, пусть даже технически такая возможность есть.

Сравнение режимов RAID

Следует отметить, что RAID 0 на самом деле не раскрывает идею массивов RAID, что расшифровывается как Redundant Arrays of Independent/Inexpensive Drives (избыточный массив недорогих/независимых дисков). Избыточность подразумевает хранение данных, по крайней мере, в двух местах, чтобы они сохранились даже при сбое одного жёсткого диска. Так и происходит, например, в случае массива RAID 1, в котором все данные зеркалируются на втором жёстком диске. Если один из винчестеров "умрёт", то вы узнаете об этом только из сообщений RAID-контроллера. Массив RAID 5 намного более сложный и рассчитан на профессиональный сектор. Он работает подобно массиву RAID 0, распределяя данные по всем жёстким дискам, но к данным добавляется информация избыточности. Поэтому чистая ёмкость массива RAID 5 равняется суммарной ёмкости всех жёстких дисков за исключением одного. Информация избыточности записывается не на один жёсткий диск (как в случае RAID 3), а распределяется по всем накопителям, чтобы не создавать "узкое место" при чтении или записи информации избыточности на один HDD. Массив RAID 5, вполне понятно, требует не меньше трёх жёстких дисков.

Риски и побочные эффекты

Главная опасность для массива RAID 0 - выход из строя любого жёсткого диска, так как при этом теряется весь массив. Именно поэтому чем больше дисков в массиве RAID 0, тем выше риск потерять информацию. Если используются три винчестера, то вероятность потери информации по сравнению с одним накопителем увеличивается в три раза. Именно поэтому RAID 0 нельзя считать хорошим вариантом для пользователей, кому нужна надёжная система, и кто не может допустить ни минуты простоя.

Даже если вы купите мощный и дорогой отдельный RAID-контроллер, вы всё равно будете зависеть от "железа". Два разных контроллера могут поддерживать RAID 5, но конкретная реализация может очень сильно отличаться.



Intel Matrix RAID: на одном наборе жёстких дисков можно создавать разные массивы RAID.

Если RAID-контроллер достаточно "умный", то он может позволять устанавливать два или больше массивов RAID на один набор жёстких дисков. Хотя каждый RAID-контролер может поддерживать несколько массивов RAID, для этого, чаще всего, требуются разные наборы жёстких дисков. Поэтому южные мосты Intel ICH7-R и ICH8-R оказались очень интересными: они поддерживают функцию Intel Matrix RAID.

Типичной реализацией можно назвать два массива RAID на двух жёстких дисках. Первую треть ёмкости двух жёстких дисков можно отвести на быстрый массив RAID 0 для операционной системы, а остальную часть - на массив RAID 1 для хранения важных данных. Если один из жёстких дисков выйдет из строя, то операционная система будет потеряна, но важные данные, которые зеркалируются на второй жёсткий диск, сохранятся благодаря RAID 1. Кстати, после установки Windows можно создать образ операционной системы и хранить его на надёжном массиве RAID 1. Тогда, если винчестер выйдет из строя, ОС можно будет быстро восстановить.

Следует помнить, что многие RAID-массивы требуют установки драйвера RAID (например, Intel Matrix Storage Manager), что может создавать проблемы во время загрузки и восстановления системы. Любому загрузочному диску, который вы будете использовать для восстановления, потребуются драйверы RAID. Поэтому приберегите дискету с драйверами для такого случая.

Тестовая конфигурация

Конфигурация для тестов низкого уровня

Процессоры 2x Intel Xeon (ядро Nocona), 3,6 ГГц, FSB800, кэш L2 1 Мбайт
Платформа Asus NCL-DS (Socket 604), чипсет Intel E7520, BIOS 1005
Память Corsair CM72DD512AR-400 (DDR2-400 ECC, reg.), 2x 512 Мбайт, задержки CL3-3-3-10
Системный жёсткий диск Western Digital Caviar WD1200JB, 120 Гбайт, 7200 об/мин, кэш 8 Мбайт, UltraATA/100
Контроллеры накопителей Intel 82801EB UltraATA/100 Controller (ICH5)
Silicon Image Sil3124, PCI-X
Сеть Встроенный контроллер Broadcom BCM5721 Gigabit Ethernet
Видеокарта Встроенная ATi RageXL, 8 Мбайт
Тесты и настройки
Тесты производительности c"t h2benchw 3.6
PCMark05 V1.01
Тесты ввода/вывода IOMeter 2003.05.10
Fileserver-Benchmark
Webserver-Benchmark
Database-Benchmark
Workstation-Benchmark
Системное ПО
ОС Microsoft Windows Server 2003 Enterprise Edition, Service Pack 1
Драйвер платформы Intel Chipset Installation Utility 7.0.0.1025
Графический драйвер Default Windows Graphics Driver

Конфигурация для SYSmark2004 SE

Системное аппаратное обеспечение
Процессор Intel Core 2 Extreme X6800 (Conroe 65 нм, 2,93 ГГц, 4 Мбайт кэша L2)
Материнская плата Gigabyte GA-965P-DQ6 2.0, чипсет: Intel 965P, BIOS: F9
Общее аппаратное обеспечение
Память 2x 1024 Мбайт DDR2-1111 (CL 4,0-4-4-12), Corsair CM2X1024-8888C4D XMS6403v1.1
Видеокарта HIS X1900XTX IceQ3, GPU: ATi Radeon X1900 XTX (650 МГц), память: 512 Мбайт GDDR3 (1550 МГц)
Жёсткий диск I 150 Гбайт, 10 000 об/мин, кэш 8 Мбайт, SATA/150, Western Digital WD1500ADFD
Жёсткий диск II 400 Гбайт, 7 200 об/мин, кэш 16 Мбайт, SATA/300, Western Digital WD4000KD
DVD-ROM Gigabyte GO-D1600C (16x)
Программное обеспечение
Драйверы ATi Catalyst Suite 7.1
Драйверы чипсета Intel Software Installation Utility 8.1.1.1010
Драйверы RAID Intel Matrix Storage Manager 6.2.1.1002
DirectX 9.0c (4.09.0000.0904)
ОС Windows XP, Build 2600 SP2
Тесты и настройки
SYSmark Version 2004 Second Edition, Official Run

Что ж, придётся перейти к итогам битвы между текущими 150-Гбайт жёсткими дисками WD Raptor и 400-Гбайт винчестерами WD4000KD в массиве RAID 0. Результат оказался удивительным. Хотя WD Raptor остаётся, без сомнения, самым быстрым настольным жёстким диском Serial ATA, массив RAID 0 выходит на первое место в большинстве тестов, не считая времени доступа и производительности ввода/вывода. Стоимость хранения гигабайта данных на Raptor вызывает наибольшие сомнения, поскольку вы можете купить в три раза более ёмкий жёсткий диск на 7 200 об/мин в два раза дешевле. То есть по цене гигабайта Raptor сегодня проигрывает в шесть раз. Впрочем, если вы беспокоитесь за сохранность данных, то дважды подумайте, прежде чем предпочесть массив RAID 0 на двух дешёвых жёстких дисках на 7 200 об/мин по сравнению с WD Raptor.

В ближайшие месяцы цена на 500-Гбайт жёсткие диски упадёт ниже $100. Но возрастут требования к доступному объёму, чтобы хранить видео высокого разрешения, музыку и фотографии. Наконец, плотность записи на пластины жёстких дисков продолжает увеличиваться, поэтому вскоре появятся более производительные модели на 7 200 об/мин. В перспективе привлекательность Raptor будет падать.

Как нам кажется, Western Digital следует изменить ценовую политику модельного ряда Raptor, поскольку прирост производительности происходит за счёт больших компромиссов по ёмкости жёстких дисков. И, надо сказать, подобные компромиссы не всем покажутся оправданными. Мы хотели бы увидеть появление обновлённого жёсткого диска Raptor на 300 Гбайт, который, возможно, стал бы ещё и гибридным винчестером со встроенной флэш-памятью для Windows Vista.

При создании файлового сервера или производительной рабочей станции часто приходится сталкиваться с проблемой выбора конфигурации дисковой подсистемы. Современные материнские платы, даже бюджетного уровня, предлагают возможность создания RAID массивов всех популярных уровней, не стоит также забывать и о программной реализации RAID. Какой из вариантов будет надежнее и производительнее? Мы решили провести свое тестирование.

Тестовый стенд

Как правило в организациях малого и среднего бизнеса на роль файловых серверов, серверов уровня отдела и т.п. используется обычный ПК, собранный из обычных, бюджетных, комплектующих. Целью нашего тестирования было изучение производительности дисковой подсистемы собранной с помощью RAID контроллера чипсета и его сравнение с программными реализациями RAID массивов (средствами ОС). Поводом для проведения тестирования стало отсутствие в широком доступе объективных тестов бюджетных RAID, а также большое количество "мифов и легенд" по этому вопросу. Мы специально не подбирали железо, а воспользовались тем, что было под рукой. А под рукой оказались несколько обычных ПК для очередного внедрения, один из которых был использован в качестве тестового стенда.

Конфигурация ПК:

  • Материнская плата: ASUS M4N68T-M SocketAM3
  • Процессор: CPU AMD ATHLON II X2 245 (ADX245O) 2.9 ГГц/ 2Мб/ 4000МГц Socket AM3
  • Оперативная память: 2 х Kingston ValueRAM DDR-III DIMM 1Gb
  • Жесткие диски: HDD 320 Gb SATA-II 300 Western Digital Caviar Blue 7200rpm 16Mb
  • Операционная система: Windows Server 2008 SP2 (32-bit)
  • Файловая система: NTFS

Дисковая подсистема была сконфигурирована следующим образом: на один диск была установлена операционная система, из двух или трех других собирался RAID массив.

Методика тестирования

В качестве тестового ПО нами был выбран Intel NAS Performance Toolkit , данный пакет представляет набор тестов, позволяющий оценить производительность дисковой подсистемы на основных характерных задачах. Каждый тест выполнялся пять раз, конечный результат представляет среднее значение. За эталон мы взяли производительность одиночного жесткого диска.

Нами были протестированы массивы RAID0, RAID1 и RAID5, причем RAID5 был протестирован как в нормальном режиме, так и в аварийном, с одним изъятым диском. Почему в аварийном режиме мы протестировали только этот массив? Ответ прост: для RAID0 такого режима не существует, при отказе любого из дисков массив разрушается, а единственный оставшийся диск RAID1 ничем ни будет отличатся от одиночного диска.

Тестировались как аппаратные, так и программные реализации, первоначально мы еще замеряли среднюю загрузку ЦПУ, так как бытует мнение, что программный RAID сильно грузит процессор. Однако от включения данного замера в результаты тестов мы отказались, нагрузка на процессор оказалась приблизительно равна и составила около 37-40% для одиночного диска, RAID0, RAID1 и 40-45% для RAID5.

Файловые операции

Классическими операциями для любого накопителя являются операции чтения и записи. В Intel NASPT эти параметры оцениваются в четырех тестах: копирование на накопитель и обратно файла размером 247 Мб и 44 папок содержащих 2833 файла общим объемом 1,2 Гб.

Чтение / запись файлов

Если обратить внимание на результаты эталонного диска, то увидим, что скорость записи почти вдвое (на 89%) выше скорости чтения. Это связано с особенностями работы файловой системы и этот факт также следует учитывать. RAID0 (чередующийся массив), вне зависимости от способа реализации показал на 70% более высокую производительность, чем одиночный диск, в то время как скоростные параметры RAID1 (зеркало) полностью ему идентичны.

Отдельного разговора заслуживает RAID5, скорость записи на него неприемлемо низкая, замедление составляет до 70%, в то время как скорость чтения не уступает быстрому RAID0. Возможно это связано с недостатком вычислительных ресурсов и несовершенством алгоритмов, ведь при записи тратятся дополнительные ресурсы для вычисление контрольной суммы. При отказе одного из дисков скорость записи падает, у аппаратного решения спад менее выражен (15%), чем у программного (40%). Скорость чтения при этом падает значительно и соответствует скорости одиночного диска.

Чтение / запись папок

Каждый, кто пробовал скопировать россыпь мелких файлов, знает - лучше предварительно запаковать их в архив, так будет значительно быстрее. Наши тесты только подтверждают это эмпирическое правило, чтение россыпи мелких файлов и папок почти на 60% медленнее, чтения крупного файла, скорость записи также незначительно (10%) ниже.

RAID0 дает гораздо меньшее преимущество на операциях записи (30-40%), а на операциях чтения разницей вообще можно пренебречь. RAID1 ожидаемо не подносит нам никаких сюрпризов, идя один в один с одиночным диском.

RAID5 на мелких файлах показывает гораздо более лучший результат, но все равно продолжает уступать одиночному диску в среднем 35%. Скорость чтения ничем не отличается от остальных конфигураций, мы склонны считать, что в данном случае сдерживающим фактором является время произвольного доступа винчестера. А вот при изъятии из массива одного диска мы получили весьма неожиданный результат, который заставил нас его несколько раз перепроверить, в том числе и на другой модели винчестеров (500 Gb Seagate/Maxtor Barracuda 7200.12/DiamondMax 23 <3500418AS> 7200rpm 16Mb). Дело в том, что скорость записи аппаратного массива резко упала (почти в три раза), а скорость записи программного RAID5 наоборот выросла, возможно это связано с алгоритмом программной реализации массива. И все же мы предпочитаем оставить данный "феномен" без комментариев.

Работа с приложениями

Следующие тесты отражают производительность дисковой подсистемы при работе с различного рода приложениями, прежде всего офисными. Первый тест (Content Creation) отражает использование диска для хранения и работы с данными, пользователь создает, открывает, сохраняет документы не проявляя особой активности. Наиболее мощный тест - Office Productivity, он моделирует активную работу с документами, поиск информации в интернете (на накопитель сбрасывается кэш браузера), в общей сложности 616 файлов в 45 каталогах объемом 572 Мб. Последний тест - работа с фотоальбомом (преимущественно просмотр), более характерен для домашнего применения, включает в себя 1,2 Гб фото (169 файлов, 11 каталогов).

Работа с документами

При работе с одиночными файлами RAID0 вполне предсказуемо почти в два раза опережает RAID1 и одиночный жесткий диск (тест Content Creation), однако при активной работе теряет все свои преимущества, в тесте Office Productivity RAID0, RAID1 и одиночный диск показывают одинаковые результаты.

RAID5 в данных тестах явный аутсайдер, на одиночных файлах производительность массива крайне низка, причем аппаратная реализация показывает гораздо более лучший (но все равно крайне низкий) результат. При активной офисной работе результаты гораздо лучше, но все равно ниже чем у одиночного диска и более простых массивов.

Работа с фотографиями

В данном режиме все массивы показали примерно одинаковый результат, сравнимый с производительностью одиночного диска. Хотя RAID5 показал несколько более низкий результат, хотя в данном случае отставание вряд ли удастся заметить "невооруженным глазом".

Мультимедиа

Ну и напоследок мультимедийные тесты, которые мы разбили на две части: воспроизведение и запись. В первом случае с накопителя воспроизводится HD видео в один, два и четыре потока одновременно. Во втором производится запись и одновременная запись - воспроизведение двух файлов. Данный тест применим не только к видео, так как характеризует общие процессы линейной записи / чтения с дискового массива.

Воспроизведение

RAID0

Данный вид дискового массива уверенно лидирует при работе с крупными файлами и мультимедиа. В большинстве случаев позволяет достичь значительного преимущества (около 70%) по сравнению с одиночным диском, однако имеет один существенный недостаток - крайне низкую отказоустойчивость. При выходе из строя одного диска разрушается весь массив. При работе с офисными приложениями и фотографиями особых преимуществ не имеет.

Где можно применять RAID0? В первую очередь на рабочих станциях, которым по роду задач приходится работать с большими файлами, например, видеомонтаж. Если требуется отказоустойчивость можно применить RAID10 или RAID0+1 которые представляют чередующийся массив из двух зеркал или зеркало из чередующихся массивов, данные уровни RAID сочетают скоростные параметры RAID0 и надежность RAID1, из недостатков можно назвать существенные накладные расходы - для хранения используется только половина емкости дисков входящих в массив.

RAID1

Никаких скоростных преимуществ перед одиночным диском "зеркало" не имеет, основная задача этого массива - обеспечение отказоустойчивости. Рекомендуется к применению при работе с офисными файлами и мелкими файлами, т.е. на тех задачах где разница между более скоростными массивами не столь велика. Неплохо подойдет для работы с 1С:Предприятие 7.7 в файловом режиме, который по характеру работы с диском представляет нечто среднее между Office Productivity и Dir copy from / to NAS. Для более производительных задач не рекомендуется, здесь стоит обратить внимание на RAID10 и RAID0+1.

RAID5

Мы бы не рекомендовали применять этот вид массива в бюджетных системах, на операциях записи RAID5 значительно проигрывает даже одиночному жесткому диску. Единственная сфера, где его применение будет оправдано, это создание медиасерверов для хранения мультимедийных данных, основной режим которых - чтение. Здесь на первый план выходят такие параметры как высокая скорость чтения (на уровне RAID0) и меньшие накладные расходы на обеспечение отказоустойчивости (1/3 емкости массива), что дает неплохой выигрыш при создании хранилищ значительного объема. Однако следует помнить, что попытка записи на массив приводит к резкому снижению производительности, поэтому заливку новых данных на подобные медиасервера следует производить в часы наименьшей загруженности.

Аппаратный или программный?

Результаты тестов не выявили каких либо заметных достоинств или недостатков для обоих вариантов реализации, разве что RAID5, аппаратный вариант которого показывал в ряде случаев более высокий результат. Поэтому следует исходить из других особенностей. Таких как совместимость и переносимость.

Аппаратные RAID реализуются силами южного моста чипсета (либо отдельным контроллером) и требуют поддержки со стороны ОС, либо подгрузки драйверов на стадии установки. Этот же факт делает зачастую невозможным использование ряда дисковых и системных утилит использующих собственные загрузочные диски, если их загрузчик не имеет поддержки RAID контроллера, то ПО просто не увидит вашего массива.

Второй недостаток - привязка к конкретному производителю, если вы решитесь сменить платформу или выберете материнскую плату с другим чипсетом вам придется скопировать свои данные на внешний носитель (что само по себе бывает проблемно) и собирать массив заново. Главная неприятность заключается в том, что при неожиданном выходе материнской платы из строя вам придется искать аналогичную модель для получения доступа к своим данным.

Программный RAID поддерживается на уровне OC, поэтому во многом лишен этих недостатков, массив легко собирается и легко переносится между аппаратными платформами, в случае выхода из строя оборудования доступ к данным можно легко получить на другом ПК, имеющем совместимую версию Windows (младшие редакции не поддерживают динамических дисков).

Из недостатков следует отметить невозможность установки Windows на тома RAID0 и RAID5, по той причине, что установка Windows на динамический том возможна только тогда, когда этот том был преобразован из базового загрузочного или системного тома. Подробнее о динамических томах можно прочитать .

В интернете есть масса статей с описанием RAID. Например, эта описывает все очень подробно. Но как обычно, читать все не хватает времени, поэтому надо что-нибудь коротенькое для понимания - а надо оно или нет, и что лучше использовать применительно к работе с СУБД (InterBase, Firebird или что то иное - на самом деле все равно). Перед вашими глазами - именно такой материал.

В первом приближении RAID это объединение дисков в один массив. SATA, SAS, SCSI, SSD - неважно. Более того, практически каждая нормальная материнская плата сейчас поддерживает возможность организации SATA RAID. Пройдемся по списку, какие бывают RAID и зачем они. (Хотел бы сразу заметить, что в RAID нужно объединять одинаковые диски. Объединение дисков от разных производителей, от одного но разных типов, или разных размеров - это баловство для человека, сидящего на домашнем компьютере).

RAID 0 (Stripe)

Грубо говоря, это последовательное объединение двух (или более) физических дисков в один "физический" диск. Годится разве что для организации огромных дисковых пространств, например, для тех, кто работает с редактированием видео. Базы данных на таких дисках держать нет смысла - в самом деле, если даже у вас база данных имеет размер 50 гигабайт, то почему вы купили два диска размером по 40 гигабайт, а не 1 на 80 гигабайт? Хуже всего то, что в RAID 0 любой отказ одного из дисков ведет к полной неработоспособности такого RAID, потому что данные записываются поочередно на оба диска, и соответственно, RAID 0 не имеет средств для восстановления в случае сбоев.

Конечно, RAID 0 дает ускорение в работе из-за чередования чтения/записи.

RAID 0 часто используют для размещения временных файлов.

RAID 1 (Mirror)

Зеркалирование дисков. Если Shadow в IB/FB это программное зеркалирование (см. Operations Guide.pdf), то RAID 1 - аппаратное зеркалирование, и ничего более. Упаси вас от использования программного зеркалирования средствами ОС или сторонним ПО. Надо или "железный" RAID 1, или shadow.

При сбое тщательно проверяйте, какой именно диск сбойнул. Самый частый случай погибания данных на RAID 1 - это неверные действия при восстановлении (в качестве "целого" указан не тот диск).

Насчет производительности - по записи выигрыш 0, по чтению - возможно до 1.5 раз, т. к. чтение может производиться "параллельно" (поочередно с разных дисков) . Для баз данных ускорение мало, в то время как при параллельном обращении к разным (!) частям (файлам) диска ускорение будет абсолютно точно.

RAID 1+0

Под RAID 1+0 имеют в виду вариант RAID 10, когда два RAID 1 объединяются в RAID 0. Вариант, когда два RAID 0 объединяются в RAID 1 называется RAID 0+1, и "снаружи" представляет собой тот же RAID 10.

RAID 2-3-4

Эти RAID являются редкими, т. к. в них используются коды Хэмминга, либо разбиение байт на блоки + контрольные суммы и т. п., но общее резюме таково - эти RAID дают только надежность, при 0-вом увеличении производительности, и иногда даже ее ухудшении.

RAID 5

Для него нужно минимально 3 диска. Данные четности распределяются по всем дискам массива

Обычно говорится, что "RAID5 использует независимый доступ к дискам, так что запросы к разным дискам могут выполняться параллельно". Следует иметь в виду, что речь идет, конечно, о параллельных запросах на ввод-вывод. Если такие запросы идут последовательно (в SuperServer), то конечно, эффекта распараллеливания доступа на RAID 5 вы не получите. Разумеется, RAID5 даст прирост производительности, если с массивом будут работать операционная система и другие приложения (например, на нем будет находиться виртуальная память, TEMP и т. п.).

Вообще RAID 5 раньше был наиболее часто используемым массивом дисков для работы с СУБД. Сейчас такой массив можно организовать и на SATA дисках, причем он получится существенно дешевле, чем на SCSI. Цены и контроллеры вы можете посмотреть в статьях
Причем, следует обратить внимание на объем покупаемых дисков - например, в одной из упомянутых статей RAID5 собирается из 4-х дисков объемом 34 гиг, при этом объем "диска" получается 103 гигабайта.

Тестирование пяти контроллеров SATA RAID - http://www.thg.ru/storage/20051102/index.html .

Adaptec SATA RAID 21610SA в массивах RAID 5 - http://www.ixbt.com/storage/adaptec21610raid5.shtml .

Почему RAID 5 - это плохо - https://geektimes.ru/post/78311/

Внимание! При закупке дисков для RAID5 обычно берут 3 диска, по минимуму (скорее из-за цены). Если вдруг по прошествии времени один из дисков откажет, то может возникнуть ситуация, когда не удастся приобрести диск, аналогичный используемым (перестали выпускаться, временно нет в продаже, и т. п.). Поэтому более интересной идеей кажется закупка 4-х дисков, организация RAID5 из трех, и подключение 4-го диска в качестве резервного (для бэкапов, других файлов и прочих нужд).

Объем дискового массива RAID5 расчитывается по формуле (n-1)*hddsize, где n - число дисков в массиве, а hddsize - размер одного диска. Например, для массива из 4-х дисков по 80 гигабайт общий объем будет 240 гигабайт.

Есть по поводу "непригодности" RAID5 для баз данных. Как минимум его можно рассматривать с той точки зрения, что для получения хорошей производительности RAID5 необходимо использовать специализированный контроллер, а не то, что есть по умолчанию на материнской плате.

Статья RAID-5 must die . И еще о потерях данных на RAID5 .

Примечание. На 05.09.2005 стоимость SATA диска Hitachi 80Gb составляет 60 долларов.

RAID 10, 50

Дальше идут уже комбинации из перечисленных вариантов. Например, RAID 10 это RAID 0 + RAID 1. RAID 50 - это RAID 5 + RAID 0.

Интересно, что комбинация RAID 0+1 в плане надежности оказывается хуже, чем RAID5. В копилке службы ремонта БД есть случай сбоя одного диска в системе RAID0 (3 диска) + RAID1 (еще 3 таких же диска). При этом RAID1 не смог "поднять" резервный диск. База оказалась испорченной без шансов на ремонт.

Для RAID 0+1 требуется 4 диска, а для RAID 5 - 3. Подумайте об этом.

RAID 6

В отличие от RAID 5, который использует четность для защиты данных от одиночных неисправностей, в RAID 6 та же четность используется для защиты от двойных неисправностей. Соответственно, процессор более мощный, чем в RAID 5, и дисков требуется уже не 3, а минимум 5 (три диска данных и 2 диска контроля четности). Причем, количество дисков в raid6 не имеет такой гибкости, как в raid 5, и должно быть равно простому числу (5, 7, 11, 13 и т. д.)

Допустим одновременный сбой двух дисков, правда, такой случай является весьма редким.

По производительности RAID 6 я данных не видел (не искал), но вполне может быть, что из-за избыточного контроля производительность может быть на уровне RAID 5.

Rebuild time

У любого массива RAID, который остается работоспособным при сбое одного диска, существует такое понятие, как rebuild time . Разумеется, когда вы заменили сдохший диск на новый, контроллер должен организовать функционирование нового диска в массиве, и на это потребуется определенное время.

Во время "подключения" нового диска, например, для RAID 5, контроллер может допускать работу с массивом. Но скорость работы массива в этом случае будет весьма низкой, как минимум потому, что даже при "линейном" наполнении нового диска информацией запись на него будет "отвлекать" контроллер и головки диска на операции синхронизации с остальными дисками массива.

Время восстановления функционирования массива в нормальном режиме напрямую зависит от объема дисков. Например, Sun StorEdge 3510 FC Array при размере массива 2 терабайта в монопольном режиме делает rebuild в течение 4.5 часов (при цене железки около $40000). Поэтому, при организации массива и планировании восстановления при сбое нужно в первую очередь думать именно о rebuild time. Если ваша база данных и бэкапы занимают не более 50 гигабайт, и рост в год составляет 1-2 гигабайта, то вряд ли имеет смысл собирать массив из 500-гигабайтных дисков. Достаточно будет и 250-гигабайтных, при этом даже для raid5 это будет минимум 500 гигабайт места для размещения не только базы данных, но и фильмов. Зато rebuild time для 250 гигабайтных дисков будет примерно в 2 раза меньше, чем для 500 гигабайтных.

Резюме

Получается, что самым осмысленным является использование либо RAID 1, либо RAID 5. Однако, самая частая ошибка, которую делают практически все - это использование RAID "подо все". То есть, ставят RAID, на него наваливают все что есть, и... получают в лучшем случае надежность, но никак не улучшение производительности.

Еще часто не включают write cache, в результате чего запись на raid происходит медленнее, чем на обычный одиночный диск. Дело в том, что у большинства контроллеров эта опция по умолчанию выключена, т.к. считается, что для ее включения желательно наличие как минимум батарейки на raid-контроллере, а также наличие UPS.

Текст
В старой статье hddspeed.htmLINK (и в doc_calford_1.htmLINK) показано, как можно получить существенное увеличение производительности путем использования нескольких физических дисков, даже для IDE. Соответственно, если вы организуете RAID - положите на него базу, а остальное (temp, OS, виртуалка) делайте на других винчестерах. Ведь все равно, RAID сам по себе является одним "диском", пусть даже и более надежным и быстродействующим.
признан устаревшим. Все вышеупомянутое вполне имеет право на существование на RAID 5. Однако перед таким размещением необходимо выяснить - каким образом можно делать backup/restore операционной системы, и сколько по времени это будет занимать, сколько времени займет восстановление "умершего" диска, есть ли (будет ли) под рукой диск для замены "умершего" и так далее, т. е. надо будет заранее знать ответы на самые элементарные вопросы на случай сбоя системы.

Я все-таки советую операционную систему держать на отдельном SATA-диске, или если хотите, на двух SATA-дисках, связанных в RAID 1. В любом случае, располагая операционную систему на RAID, вы должны спланировать ваши действия, если вдруг прекратит работать материнская плата - иногда перенос дисков raid-массива на другую материнскую плату (чипсет, raid-контроллер) невозможен из-за несовместимости умолчательных параметров raid.

Размещение базы, shadow и backup

Несмотря на все преимущества RAID, категорически не рекомендуется, например, делать backup на этот же самый логический диск. Мало того что это плохо влияет на производительность, но еще и может привести к проблемам с отсутствием свободного места (на больших БД) - ведь в зависимости от данных файл backup может быть эквивалентным размеру БД, и даже больше. Делать backup на тот же физический диск - еще куда ни шло, хотя самый оптимальный вариант - backup на отдельный винчестер.

Объяснение очень простое. Backup - это чтение данных из файла БД и запись в файл бэкапа. Если физически все это происходит на одном диске (даже RAID 0 или RAID 1), то производительность будет хуже, чем если чтение производится с одного диска, а запись - на другой. Еще больше выигрыш от такого разделения - когда backup делается во время работы пользователей с БД.

То же самое в отношении shadow - нет никакого смысла класть shadow, например, на RAID 1, туда же где и база, даже на разные логические диски. При наличии shadow сервер пишет страницы данных как в файл базы так и в файл shadow. То есть, вместо одной операции записи производятся две. При разделении базы и shadow по разным физическим дискам производительность записи будет определяться самым медленным диском.

Проблема повышения надежности хранения информации и одновременного увеличения производительности системы хранения данных занимает умы разработчиков компьютерной периферии уже давно. Относительно повышения надежности хранения все понятно: информация - это товар, и нередко очень ценный. Для защиты от потери данных придумано немало способов, наиболее известный и надежный из которых - это резервное копирование информации.

Вопрос повышения производительности дисковой подсистемы весьма сложен. Рост вычислительных мощностей современных процессоров привел к тому, что наблюдается явный дисбаланс между возможностями жестких дисков и потребностями процессоров. При этом не спасают ни дорогие SCSI-диски, ни уж тем более IDE-диски. Однако если не хватает возможностей одного диска, то, может быть, отчасти решить данную проблему позволит наличие нескольких дисков? Конечно, само по себе наличие двух или более жестких дисков на компьютере или на сервере дела не меняет - нужно заставить эти диски работать совместно (параллельно) друг с другом так, чтобы это позволило повысить производительность дисковой подсистемы на операциях записи/чтения. Кроме того, нельзя ли, используя несколько жестких дисков, добиться повышения не только производительности, но и надежности хранения данных, чтобы выход из строя одного из дисков не приводил к потере информации? Именно такой подход был предложен еще в 1987 году американскими исследователями Паттерсоном, Гибсоном и Катцом из Калифорнийского университета Беркли. В своей статье «A Case for Redundant Arrays of Inexpensive Discs, RAID» («избыточный массив недорогих дисков») они описали, каким образом можно объединить несколько дешевых жестких дисков в одно логическое устройство так, чтобы в результате повышались емкость и быстродействие системы, а отказ отдельных дисков не приводил к отказу всей системы.

С момента выхода статьи прошло уже 15 лет, но технология построения RAID-массивов не утратила актуальности и сегодня. Единственное, что изменилось с тех пор, - это расшифровка аббревиатуры RAID. Дело в том, что первоначально RAID-массивы строились вовсе не на дешевых дисках, поэтому слово Inexpensive (недорогие) поменяли на Independent (независимые), что больше соответствовало действительности.

Более того, именно сейчас технология RAID получила широкое распространение. Так, если еще несколько лет назад RAID-массивы использовались в дорогостоящих серверах масштаба предприятия с применением SCSI-дисков, то сегодня они стали своеобразным стандартом де-факто даже для серверов начального уровня. Кроме того, постепенно расширяется и рынок IDE RAID-контроллеров, то есть актуальность приобретает задача построения RAID-массивов на рабочих станциях с использованием дешевых IDE-дисков. Так, некоторые производители материнских плат (Abit, Gigabyte) уже начали интегрировать IDE RAID-контроллеры на сами платы.

Итак, RAID - это избыточный массив независимых дисков (Redundant Arrays of Independent Discs), на который возлагается задача обеспечения отказоустойчивости и повышения производительности. Отказоустойчивость достигается за счет избыточности. То есть часть емкости дискового пространства отводится для служебных целей, становясь недоступной для пользователя.

Повышение производительности дисковой подсистемы обеспечивается одновременной работой нескольких дисков, и в этом смысле чем больше дисков в массиве (до определенного предела), тем лучше.

Совместную работу дисков в массиве можно организовать с использованием либо параллельного, либо независимого доступа.

При параллельном доступе дисковое пространство разбивается на блоки (полоски) для записи данных. Аналогично информация, подлежащая записи на диск, разбивается на такие же блоки. При записи отдельные блоки записываются на различные диски (рис. 1), причем запись нескольких блоков на различные диски происходит одновременно, что и приводит к увеличению производительности в операциях записи. Нужная информация также считывается отдельными блоками одновременно с нескольких дисков (рис. 2), что также способствует росту производительности пропорционально количеству дисков в массиве.

Следует отметить, что модель с параллельным доступом реализуется только при условии, что размер запроса на запись данных больше размера самого блока. В противном случае реализовать параллельную запись нескольких блоков просто невозможно. Представим ситуацию, когда размер отдельного блока составляет 8 Кбайт, а размер запроса на запись данных - 64 Кбайт. В этом случае исходная информация нарезается на восемь блоков по 8 Кбайт каждый. Если имеется массив из четырех дисков, то одновременно можно записать четыре блока, или 32 Кбайт, за один раз. Очевидно, что в рассмотренном примере скорость записи и скорость считывания окажется в четыре раза выше, чем при использовании одного диска. Однако такая ситуация является идеальной, поскольку далеко не всегда размер запроса кратен размеру блока и количеству дисков в массиве.

Если же размер записываемых данных меньше размера блока, то реализуется принципиально иная модель доступа - независимый доступ. Более того, эта модель может быть реализована и в том случае, когда размер записываемых данных больше размера одного блока. При независимом доступе все данные отдельного запроса записываются на отдельный диск, то есть ситуация идентична работе с одним диском. Преимущество модели с параллельным доступом в том, что при одновременном поступлении нескольких запросов на запись (чтение) все они будут выполняться независимо, на отдельных дисках (рис. 3). Подобная ситуация типична, например, в серверах.

В соответствии с различными типами доступа существуют и различные типы RAID-массивов, которые принято характеризовать уровнями RAID. Кроме типа доступа, уровни RAID различаются способом размещения и формирования избыточной информации. Избыточная информация может либо размещаться на специально выделенном диске, либо перемешиваться между всеми дисками. Способов формирования этой информации несколько больше. Простейший из них - это полное дублирование (100-процентная избыточность), или зеркалирование. Кроме того, используются коды с коррекцией ошибок, а также вычисление четности.

Уровни RAID

В настоящее время существует несколько стандартизированных RAID-уровней: от RAID 0 до RAID 5. К тому же используются комбинации этих уровней, а также фирменные уровни (например, RAID 6, RAID 7). Наиболее распространенными являются уровни 0, 1, 3 и 5.

RAID 0

RAID уровня 0, строго говоря, не является избыточным массивом и соответственно не обеспечивает надежности хранения данных. Тем не менее данный уровень находит широкое применение в случаях, когда необходимо обеспечить высокую производительность дисковой подсистемы. Особенно популярен этот уровень в рабочих станциях. При создании RAID-массива уровня 0 информация разбивается на блоки, которые записываются на отдельные диски (рис. 4), то есть создается система с параллельным доступом (если, конечно, размер блока это позволяет). Благодаря возможности одновременного ввода-вывода с нескольких дисков RAID 0 обеспечивает максимальную скорость передачи данных и максимальную эффективность использования дискового пространства, поскольку не требуется места для хранения контрольных сумм. Реализация этого уровня очень проста. В основном RAID 0 применяется в тех областях, где требуется быстрая передача большого объема данных.

RAID 1 (Mirrored disk)

RAID уровня 1 - это массив дисков со 100-процентной избыточностью. То есть данные при этом просто полностью дублируются (зеркалируются), за счет чего достигается очень высокий уровень надежности (как, впрочем, и стоимости). Отметим, что для реализации уровня 1 не требуется предварительно разбивать диски и данные на блоки. В простейшем случае два диска содержат одинаковую информацию и являются одним логическим диском (рис. 5). При выходе из строя одного диска его функции выполняет другой (что абсолютно прозрачно для пользователя). Кроме того, этот уровень удваивает скорость считывания информации, так как эта операция может выполняться одновременно с двух дисков. Такая схема хранения информации используется в основном в тех случаях, когда цена безопасности данных намного выше стоимости реализации системы хранения.

RAID 2

RAID уровня 2 - это схема резервирования данных с использованием кода Хэмминга (смотри ниже) для коррекции ошибок. Записываемые данные формируются не на основе блочной структуры, как в RAID 0, а на основе слов, причем размер слова равен количеству дисков для записи данных в массиве. Если, к примеру, в массиве имеется четыре диска для записи данных, то размер слова равен четырем дискам. Каждый отдельный бит слова записывается на отдельный диск массива. Например, если массив имеет четыре диска для записи данных, то последовательность четырех бит, то есть слово, запишется на массив дисков таким образом, что первый бит окажется на первом диске, второй бит - на втором и т.д.

Кроме того, для каждого слова вычисляется код коррекции ошибок (ECC), который записывается на выделенные диски для хранения контрольной информации (рис. 6). Их число равно количеству бит в контрольном слове, причем каждый бит контрольного слова записывается на отдельный диск. Количество бит в контрольном слове и соответственно необходимое количество дисков для хранения контрольной информации рассчитывается на основе следующей формулы: где K - разрядность слова данных.

Естественно, что L при вычислении по указанной формуле округляется в большую сторону до ближайшего целого числа. Впрочем, чтобы не связываться с формулами, можно воспользоваться другим мнемоническим правилом: разрядность контрольного слова определяется количеством разрядов, необходимым для двоичного представления размера слова. Если, например, размер слова равен четырем (в двоичной записи 100), то, чтобы записать это число в двоичном виде, потребуется три разряда, значит, размер контрольного слова равен трем. Следовательно, если имеется четыре диска для хранения данных, то потребуется еще три диска для хранения контрольных данных. Аналогично при наличии семи дисков для данных (в двоичной записи 111) понадобится три диска для хранения контрольных слов. Если же под данные отводится восемь дисков (в двоичной записи 1000), то нужно уже четыре диска для контрольной информации.

Код Хэмминга, формирующий контрольное слово, основан на использовании поразрядной операции «исключающего ИЛИ» (XOR) (употребляется также название «неравнозначность»). Напомним, что логическая операция XOR дает единицу при несовпадении операндов (0 и 1) и нуль при их совпадении (0 и 0 или 1 и 1).

Само контрольное слово, полученное по алгоритму Хэмминга, - это инверсия результата поразрядной операции исключающего ИЛИ номеров тех информационных разрядов слова, значения которых равны 1. Для иллюстрации рассмотрим исходное слово 1101. В первом (001), третьем (011) и четвертом (100) разрядах этого слова стоит единица. Поэтому необходимо провести поразрядную операцию исключающего ИЛИ для этих номеров разрядов:

Само же контрольное слово (код Хэмминга) получается при поразрядном инвертировании полученного результата, то есть равно 001.

При считывании данных вновь рассчитывается код Хэмминга и сравнивается с исходным кодом. Для сравнения двух кодов используется поразрядная операция «исключающего ИЛИ». Если результат сравнения во всех разрядах равен нулю, то считывание верное, в противном случае его значение есть номер ошибочно принятого разряда основного кода. Пусть, к примеру, исходное слово равно 1100000. Поскольку единицы стоят в шестой (110) и седьмой (111) позициях, контрольное слово равно:

Если при считывании зафиксировано слово 1100100, то контрольное слово для него равно 101. Сравнивая исходное контрольное слово с полученным (поразрядная операция исключающего ИЛИ), имеем:

то есть ошибка при считывании в третьей позиции.

Соответственно, зная, какой именно бит является ошибочным, его легко исправить «на лету».

RAID 2 - один из немногих уровней, позволяющих не только исправлять «на лету» одиночные ошибки, но и обнаруживать двойные. При этом он является самым избыточным из всех уровней с кодами коррекции. Эта схема хранения данных применяется редко, поскольку плохо справляется с большим количеством запросов, сложна в организации и обладает незначительными преимуществами перед уровнем RAID 3.

RAID 3

RAID уровня 3 - это отказоустойчивый массив с параллельным вводом-выводом и одним дополнительным диском, на который записывается контрольная информация (рис. 7). При записи поток данных разбивается на блоки на уровне байт (хотя возможно и на уровне бит) и записывается одновременно на все диски массива, кроме выделенного для хранения контрольной информации. Для вычисления контрольной информации (называемой также контрольной суммой) используется операция «исключающего ИЛИ» (XOR), применяемая к записываемым блокам данных. При выходе из строя любого диска данные на нем можно восстановить по контрольным данным и данным, оставшимся на исправных дисках.

Рассмотрим в качестве иллюстрации блоки размером по четыре бита. Пусть имеются четыре диска для хранения данных и один диск для записи контрольных сумм. Если имеется последовательность бит 1101 0011 1100 1011, разбитая на блоки по четыре бита, то для расчета контрольной суммы необходимо выполнить операцию:

Таким образом, контрольная сумма, записываемая на пятый диск, равна 1001.

Если один из дисков, например третий, вышел из строя, то блок 1100 окажется недоступным при считывании. Однако его значение легко восстановить по контрольной сумме и значениям остальных блоков, используя все ту же операцию «исключающего ИЛИ»:

Блок 3=Блок 1Блок 2Блок 4

Контрольная сумма.

В нашем примере получим:

Блок 3=1101001110111001= 1100.

RAID уровня 3 имеет намного меньшую избыточность, чем RAID 2. Благодаря разбиению данных на блоки RAID 3 имеет высокую производительность. При считывании информации не производится обращение к диску с контрольными суммами (в случае отсутствия сбоя), что происходит всякий раз при операции записи. Поскольку при каждой операции ввода-вывода производится обращение практически ко всем дискам массива, одновременная обработка нескольких запросов невозможна. Данный уровень подходит для приложений с файлами большого объема и малой частотой обращений. Кроме того, к достоинствам RAID 3 относятся незначительное снижение производительности при сбое и быстрое восстановление информации.

RAID 4

RAID уровня 4 - это отказоустойчивый массив независимых дисков с одним диском для хранения контрольных сумм (рис. 8). RAID 4 во многом схож с RAID 3, но отличается от последнего прежде всего значительно большим размером блока записываемых данных (большим, чем размер записываемых данных). В этом и есть главное различие между RAID 3 и RAID 4. После записи группы блоков вычисляется контрольная сумма (точно так же, как и в случае RAID 3), которая записывается на выделенный для этого диск. Благодаря большему, чем у RAID 3, размеру блока возможно одновременное выполнение нескольких операций чтения (схема независимого доступа).

RAID 4 повышает производительность передачи файлов малого объема (за счет распараллеливания операции считывания). Но поскольку при записи должна вычисляться контрольная сумма на выделенном диске, одновременное выполнение операций здесь невозможно (налицо асимметричность операций ввода и вывода). Рассматриваемый уровень не обеспечивает преимущества в скорости при передаче данных большого объема. Эта схема хранения разрабатывалась для приложений, в которых данные изначально разбиты на небольшие блоки, поэтому нет необходимости дополнительно их разбивать. RAID 4 представляет собой неплохое решение для файл-серверов, информация с которых преимущественно считывается и редко записывается. Эта схема хранения данных имеет невысокую стоимость, но ее реализация достаточно сложна, как и восстановление данных при сбое.

RAID 5

RAID уровня 5 - это отказоустойчивый массив независимых дисков с распределенным хранением контрольных сумм (рис. 9). Блоки данных и контрольные суммы, которые рассчитываются точно так же, как и в RAID 3, циклически записываются на все диски массива, то есть отсутствует выделенный диск для хранения информации о контрольных суммах.

В случае RAID 5 все диски массива имеют одинаковый размер, однако общая емкость дисковой подсистемы, доступной для записи, становится меньше ровно на один диск. Например, если пять дисков имеют размер 10 Гбайт, то фактический размер массива составляет 40 Гбайт, так как 10 Гбайт отводится на контрольную информацию.

RAID 5, так же как и RAID 4, имеет архитектуру независимого доступа, то есть в отличие от RAID 3 здесь предусмотрен большой размер логических блоков для хранения информации. Поэтому, как и в случае с RAID 4, основной выигрыш такой массив обеспечивает при одновременной обработке нескольких запросов.

Главным же различием между RAID 5 и RAID 4 является способ размещения контрольных сумм.

Наличие отдельного (физического) диска, хранящего информацию о контрольных суммах, здесь, как и в трех предыдущих уровнях, приводит к тому, что операции считывания, не требующие обращения к этому диску, выполняются с большой скоростью. Однако при каждой операции записи меняется информация на контрольном диске, поэтому схемы RAID 2, RAID 3 и RAID 4 не позволяют проводить параллельные операции записи. RAID 5 лишен этого недостатка, поскольку контрольные суммы записываются на все диски массива, что обеспечивает возможность выполнения нескольких операций считывания или записи одновременно.

Практическая реализация

Для практической реализации RAID-массивов необходимы две составляющие: собственно массив жестких дисков и RAID-контроллер. Контроллер выполняет функции связи с сервером (рабочей станцией), генерации избыточной информации при записи и проверки при чтении, распределения информации по дискам в соответствии с алгоритмом функционирования.

Конструктивно контроллеры бывают как внешние, так и внутренние. Имеются также интегрированные на материнской плате RAID-контроллеры. Кроме того, контроллеры различаются поддерживаемым интерфейсом дисков. Так, SCSI RAID-контроллеры предназначены для использования в серверах, а IDE RAID-контроллеры подходят как для серверов начального уровня, так и для рабочих станций.

Отличительной характеристикой RAID-контроллеров является количество поддерживаемых каналов для подключения жестких дисков. Несмотря на то что к одному каналу контроллера можно подключить несколько SCSI-дисков, общая пропускная способность RAID-массива будет ограничена пропускной способностью одного канала, которая соответствует пропускной способности SCSI-интерфейса. Таким образом, использование нескольких каналов может существенно повысить производительность дисковой подсистемы.

При использовании IDE RAID-контроллеров проблема многоканальности встает еще острее, поскольку два жестких диска, подключенных к одному каналу (большее количество дисков не поддерживается самим интерфейсом), не могут обеспечить параллельную работу - IDE-интерфейс позволяет обращаться в определенный момент времени только к одному диску. Поэтому IDE RAID-контроллеры должны быть как минимум двухканальными. Бывают также четырех- и даже восьмиканальные контроллеры.

Другим различием между IDE RAID- и SCSI RAID-контроллерами является количество поддерживаемых ими уровней. SCSI RAID-контроллеры поддерживают все основные уровни и, как правило, еще несколько комбинированных и фирменных уровней. Набор уровней, поддерживаемых IDE RAID-контроллерами, значительно скромнее. Обычно это нулевой и первый уровни. Кроме того, встречаются контроллеры, поддерживающие пятый уровень и комбинацию первого и нулевого: 0+1. Такой подход вполне закономерен, поскольку IDE RAID-контроллеры предназначены в первую очередь для рабочих станций, поэтому основной упор делается на повышение сохранности данных (уровень 1) или производительности при параллельном вводе-выводе (уровень 0). Схема независимых дисков в данном случае не нужна, так как в рабочих станциях поток запросов на запись/чтение значительно ниже, чем, скажем, в серверах.

Основной функцией RAID-массива является не увеличение емкости дисковой подсистемы (как видно из его устройства, такую же емкость можно получить и за меньшие деньги), а обеспечение надежности сохранности данных и повышение производительности. Для серверов, кроме того, выдвигается требование бесперебойности в работе, даже в случае отказа одного из накопителей. Бесперебойность в работе обеспечивается при помощи горячей замены, то есть извлечения неисправного SCSI-диска и установки нового без выключения питания. Поскольку при одном неисправном накопителе дисковая подсистема продолжает работать (кроме уровня 0), горячая замена обеспечивает восстановление, прозрачное для пользователей. Однако скорость передачи и скорость доступа при одном неработающем диске заметно снижается из-за того, что контроллер должен восстанавливать данные из избыточной информации. Правда, из этого правила есть исключение - RAID-системы уровней 2, 3, 4 при выходе из строя накопителя с избыточной информацией начинают работать быстрее! Это закономерно, поскольку в таком случае уровень «на лету» меняется на нулевой, который обладает великолепными скоростными характеристиками.

До сих пор речь в этой статье шла об аппаратных решениях. Но существует и программное, предложенное, например, фирмой Microsoft для Windows 2000 Server. Однако в этом случае некоторая начальная экономия полностью нейтрализуется добавочной нагрузкой на центральный процессор, который помимо основной своей работы вынужден распределять данные по дискам и производить расчет контрольных сумм. Такое решение может считаться приемлемым только в случае значительного избытка вычислительной мощности и малой загрузки сервера.


Сергей Пахомов

КомпьютерПресс 3"2002

Все современные материнские платы оснащены интегрированным RAID-контроллером, а топовые модели имеют даже по нескольку интегрированных RAID-контроллеров. Насколько интегрированные RAID-контроллеры востребованы домашними пользователями - вопрос отдельный. В любом случае современная материнская плата предоставляет пользователю возможность создания RAID-массива из нескольких дисков. Однако далеко не каждый домашний пользователь знает, как создать RAID-массив, какой уровень массива выбрать, да и вообще плохо представляет себе плюсы и минусы использования RAID-массивов.
В этой статье мы дадим краткие рекомендации по созданию RAID-массивов на домашних ПК и на конкретном примере продемонстрируем, каким образом можно самостоятельно протестировать производительность RAID-массива.

История создания

Впервые термин «RAID-массив» появился в 1987 году, когда американские исследователи Паттерсон, Гибсон и Катц из Калифорнийского университета Беркли в своей статье «Избыточный массив недорогих дисков» (“A Case for Redundant Arrays of Inexpensive Discs, RAID”) описали, каким образом можно объединить несколько дешевых жестких дисков в одно логическое устройство так, чтобы в результате повышались емкость и быстродействие системы, а отказ отдельных дисков не приводил к отказу всей системы.

С момента выхода этой статьи прошло уже более 20 лет, но технология построения RAID-массивов не утратила актуальности и сегодня. Единственное, что изменилось с тех пор, - это расшифровка аббревиатуры RAID. Дело в том, что первоначально RAID-массивы строились вовсе не на дешевых дисках, поэтому слово Inexpensive (недорогие) поменяли на Independent (независимые), что больше соответствовало действительности.

Принцип действия

Итак, RAID - это избыточный массив независимых дисков (Redundant Arrays of Independent Discs), на который возлагается задача обеспечения отказоустойчивости и повышения производительности. Отказоустойчивость достигается за счет избыточности. То есть часть емкости дискового пространства отводится для служебных целей, становясь недоступной для пользователя.

Повышение производительности дисковой подсистемы обеспечивается одновременной работой нескольких дисков, и в этом смысле чем больше дисков в массиве (до определенного предела), тем лучше.

Совместную работу дисков в массиве можно организовать с помощью либо параллельного, либо независимого доступа. При параллельном доступе дисковое пространство разбивается на блоки (полоски) для записи данных. Аналогично информация, подлежащая записи на диск, разбивается на такие же блоки. При записи отдельные блоки записываются на разные диски, причем запись нескольких блоков на различные диски происходит одновременно, что и приводит к увеличению производительности в операциях записи. Нужная информация также считывается отдельными блоками одновременно с нескольких дисков, что тоже способствует росту производительности пропорционально количеству дисков в массиве.

Следует отметить, что модель с параллельным доступом реализуется только при условии, что размер запроса на запись данных больше размера самого блока. В противном случае осуществлять параллельную запись нескольких блоков практически невозможно. Представим ситуацию, когда размер отдельного блока составляет 8 Кбайт, а размер запроса на запись данных - 64 Кбайт. В этом случае исходная информация нарезается на восемь блоков по 8 Кбайт каждый. Если имеется массив из четырех дисков, то одновременно можно записать четыре блока, или 32 Кбайт, за один раз. Очевидно, что в рассмотренном примере скорость записи и скорость считывания окажутся в четыре раза выше, чем при использовании одного диска. Это справедливо лишь для идеальной ситуации, однако размер запроса далеко не всегда кратен размеру блока и количеству дисков в массиве.

Если же размер записываемых данных меньше размера блока, то реализуется принципиально иная модель - независимый доступ. Более того, эта модель может использоваться и в том случае, когда размер записываемых данных больше размера одного блока. При независимом доступе все данные отдельного запроса записываются на отдельный диск, то есть ситуация идентична работе с одним диском. Преимущество модели с независимым доступом в том, что при одновременном поступлении нескольких запросов на запись (чтение) все они будут выполняться на отдельных дисках независимо друг от друга. Подобная ситуация типична, например, для серверов.

В соответствии с различными типами доступа существуют и разные типы RAID-массивов, которые принято характеризовать уровнями RAID. Кроме типа доступа, уровни RAID различаются способом размещения и формирования избыточной информации. Избыточная информация может либо размещаться на специально выделенном диске, либо распределяться между всеми дисками. Способов формирования этой информации достаточно много. Простейший из них - это полное дублирование (100-процентная избыточность), или зеркалирование. Кроме того, используются коды с коррекцией ошибок, а также вычисление четности.

Уровни RAID-массивов

В настоящее время существует несколько RAID-уровней, которые можно считать стандартизованными, - это RAID 0, RAID 1, RAID 2, RAID 3, RAID 4, RAID 5 и RAID 6.

Применяются также различные комбинации RAID-уровней, что позволяет объединить их достоинства. Обычно это комбинация какого-либо отказоустойчивого уровня и нулевого уровня, применяемого для повышения производительности (RAID 1+0, RAID 0+1, RAID 50).

Отметим, что все современные RAID-контроллеры поддерживают функцию JBOD (Just a Bench Of Disks), которая не предназначена для создания массивов, - она обеспечивает возможность подключения к RAID-контроллеру отдельных дисков.

Нужно отметить, что интегрированные на материнские платы для домашних ПК RAID-контроллеры поддерживают далеко не все RAID-уровни. Двухпортовые RAID-контроллеры поддерживают только уровни 0 и 1, а RAID-контроллеры с большим количество портов (например, 6-портовый RAID-контроллер, интегрированный в южный мост чипсета ICH9R/ICH10R) - также уровни 10 и 5.

Кроме того, если говорить о материнских платах на чипсетах Intel, то в них тоже реализована функция Intel Matrix RAID, которая позволяет создать на нескольких жестких дисках одновременно RAID-матрицы нескольких уровней, выделив для каждой из них часть дискового пространства.

RAID 0

RAID уровня 0, строго говоря, не является избыточным массивом и соответственно не обеспечивает надежности хранения данных. Тем не менее данный уровень активно применяется в случаях, когда необходимо обеспечить высокую производительность дисковой подсистемы. При создании RAID-массива уровня 0 информация разбивается на блоки (иногда эти блоки называют страйпами (stripe)), которые записываются на отдельные диски, то есть создается система с параллельным доступом (если, конечно, это позволяет размер блока). Благодаря возможности одновременного ввода-вывода с нескольких дисков, RAID 0 обеспечивает максимальную скорость передачи данных и максимальную эффективность использования дискового пространства, поскольку не требуется места для хранения контрольных сумм. Реализация этого уровня очень проста. В основном RAID 0 применяется в тех областях, где требуется быстрая передача большого объема данных.

RAID 1 (Mirrored disk)

RAID уровня 1 - это массив двух дисков со 100-процентной избыточностью. То есть данные при этом просто полностью дублируются (зеркалируются), за счет чего достигается очень высокий уровень надежности (как, впрочем, и стоимости). Отметим, что для реализации уровня 1 не требуется предварительно разбивать диски и данные на блоки. В простейшем случае два диска содержат одинаковую информацию и являются одним логическим диском. При выходе из строя одного диска его функции выполняет другой (что абсолютно прозрачно для пользователя). Восстановление массива выполняется простым копированием. Кроме того, этот уровень удваивает скорость считывания информации, так как эта операция может выполняться одновременно с двух дисков. Подобная схема хранения информации используется в основном в тех случаях, когда цена безопасности данных гораздо выше стоимости реализации системы хранения.

RAID 5

RAID 5 - это отказоустойчивый дисковый массив с распределенным хранением контрольных сумм. При записи поток данных разбивается на блоки (страйпы) на уровне байтов и одновременно записываются на все диски массива в циклическом порядке.

Предположим, что массив содержит n дисков, а размер страйпа d . Для каждой порции из n–1 страйпов рассчитывается контрольная сумма p .

Cтрайп d 1 записывается на первый диск, страйп d 2 - на второй и так далее вплоть до страйпа d n–1 , который записывается на (n –1)-й диск. Далее на n -й диск записывается контрольная сумма p n , и процесс циклически повторяется с первого диска, на который записывается страйп d n .

Процесс записи (n–1) страйпов и их контрольной суммы производится одновременно на все n дисков.

Для вычисления контрольной суммы используется поразрядная операция «исключающего ИЛИ» (XOR), применяемая к записываемым блокам данных. Так, если имеется n жестких дисков, d - блок данных (страйп), то контрольная сумма рассчитывается по следующей формуле:

p n = d 1 d 2 ... d 1–1 .

В случае выхода из строя любого диска данные на нем можно восстановить по контрольным данным и по данным, оставшимся на исправных дисках.

В качестве иллюстрации рассмотрим блоки размером по четыре бита. Пусть имеются всего пять дисков для хранения данных и записи контрольных сумм. Если есть последовательность битов 1101 0011 1100 1011, разбитая на блоки по четыре бита, то для расчета контрольной суммы необходимо выполнить следующую поразрядную операцию:

1101 0011 1100 1011 = 1001.

Таким образом, контрольная сумма, записываемая на пятый диск, равна 1001.

Если один из дисков, например четвертый, вышел из строя, то блок d 4 = 1100 окажется недоступным при считывании. Однако его значение легко восстановить по контрольной сумме и по значениям остальных блоков с помощью все той же операции «исключающего ИЛИ»:

d 4 = d 1 d 2 d 4 p 5 .

В нашем примере получим:

d 4 = (1101) (0011) (1100) (1011) = 1001.

В случае RAID 5 все диски массива имеют одинаковый размер, однако общая емкость дисковой подсистемы, доступной для записи, становится меньше ровно на один диск. Например, если пять дисков имеют размер 100 Гбайт, то фактический размер массива составляет 400 Гбайт, поскольку 100 Гбайт отводится на контрольную информацию.

RAID 5 может быть построен на трех и более жестких дисках. С увеличением количества жестких дисков в массиве его избыточность уменьшается.

RAID 5 имеет архитектуру независимого доступа, что обеспечивает возможность одновременного выполнения нескольких операций считывания или записи.

RAID 10

Уровень RAID 10 представляет собой некое сочетание уровней 0 и 1. Минимально для этого уровня требуются четыре диска. В массиве RAID 10 из четырех дисков они попарно объединяются в массивы уровня 0, а оба этих массива как логические диски объединяются в массив уровня 1. Возможен и другой подход: первоначально диски объединяются в зеркальные массивы уровня 1, а затем логические диски на основе этих массивов - в массив уровня 0.

Intel Matrix RAID

Рассмотренные RAID-массивы уровней 5 и 1 редко используются в домашних условиях, что связано прежде всего с высокой стоимостью подобных решений. Наиболее часто для домашних ПК применяется именно массив уровня 0 на двух дисках. Как мы уже отмечали, RAID уровня 0 не обеспечивает безопасности хранения данных, а потому конечные пользователи сталкиваются с выбором: создавать быстрый, но не обеспечивающий надежности хранения данных RAID-массив уровня 0 или же, увеличивая стоимость дискового пространства в два раза, - RAID-массив уровня 1, который обеспечивает надежность хранения данных, однако не позволяет получить существенного выигрыша в производительности.

Для того чтобы разрешить эту нелегкую проблему, корпорация Intel разработала технологию Intel Matrix Storage, позволяющую объединить достоинства массивов уровней 0 и 1 всего на двух физических дисках. А для того, чтобы подчеркнуть, что речь в данном случае идет не просто о RAID-массиве, а о массиве, сочетающем в себе и физические и логические диски, в названии технологии вместо слова «массив» используется слово «матрица».

Итак, что же представляет собой RAID-матрица из двух дисков по технологии Intel Matrix Storage? Основная идея заключается в том, что при наличии в системе нескольких жестких дисков и материнской платы с чипсетом Intel, поддерживающим технологию Intel Matrix Storage, возможно разделение дискового пространства на несколько частей, каждая из которых будет функционировать как отдельный RAID-массив.

Рассмотрим простой пример RAID-матрицы из двух дисков по 120 Гбайт каждый. Любой из дисков можно разбить на два логических диска, например по 40 и 80 Гбайт. Далее два логических диска одного размера (например, по 40 Гбайт) можно объединить в RAID-матрицу уровня 1, а оставшиеся логические диски - в RAID-матрицу уровня 0.

В принципе, используя два физических диска, также можно создать всего одну или две RAID-матрицы уровня 0, но вот получить только матрицы уровня 1 невозможно. То есть если в системе имеются всего два диска, то технология Intel Matrix Storage позволяет создавать следующие типы RAID-матриц:

  • одна матрица уровня 0;
  • две матрицы уровня 0;
  • матрица уровня 0 и матрица уровня 1.

Если в системе установлены три жестких диска, то возможно создание следующих типов RAID-матриц:

  • одна матрица уровня 0;
  • одна матрица уровня 5;
  • две матрицы уровня 0;
  • две матрицы уровня 5;
  • матрица уровня 0 и матрица уровня 5.

Если в системе установлены четыре жестких диска, то дополнительно имеется возможность создать RAID-матрицу уровня 10, а также комбинации уровня 10 и уровня 0 или 5.

От теории к практике

Ели говорить о домашних компьютерах, то наиболее востребованными и популярными являются RAID-массивы уровней 0 и 1. Использование RAID-массивов из трех и более дисков в домашних ПК - скорее исключение из правила. Связано это с тем, что, с одной стороны, стоимость RAID-массивов возрастает пропорционально количеству задействованных в нем дисков, а с другой - для домашних компьютеров первоочередное значение имеет емкость дискового массива, а не его производительность и надежность.

Поэтому в дальнейшем мы рассмотрим RAID-массивы уровней 0 и 1 на основе только двух дисков. В задачу нашего исследования будет входить сравнение производительности и функциональности RAID-массивов уровней 0 и 1, созданных на базе нескольких интегрированных RAID-контроллеров, а также исследование зависимости скоростных характеристик RAID-массива от размера страйпа.

Дело в том, что хотя теоретически при использовании RAID-массива уровня 0 скорость чтения и записи должна возрастать вдвое, на практике возрастание скоростных характеристик гораздо менее скромное и для разных RAID-контроллеров оно различно. Аналогично и для RAID-массива уровня 1: несмотря на то что теоретически скорость чтения должна увеличиваться вдвое, на практике не всё так гладко.

Для нашего сравнительного тестирования RAID-контроллеров мы использовали материнскую плату Gigabyte GA-EX58A-UD7. Эта плата основана на чипсете Intel X58 Express с южным мостом ICH10R, имеющим интегрированный RAID-контроллер на шесть портов SATA II, который поддерживает организацию RAID-массивов уровней 0, 1, 10 и 5 с функцией Intel Matrix RAID. Кроме того, на плате Gigabyte GA-EX58A-UD7 интегрирован RAID-контроллер GIGABYTE SATA2, на базе которого реализованы два порта SATA II c возможностью организации RAID-массивов уровней 0, 1 и JBOD.

Также на плате GA-EX58A-UD7 интегрирован SATA III-контроллер Marvell 9128, на базе которого реализованы два порта SATA III c возможностью организации RAID-массивов уровней 0, 1 и JBOD.

Таким образом, на плате Gigabyte GA-EX58A-UD7 имеются три отдельных RAID-контроллера, на базе которых можно создать RAID-массивы уровней 0 и 1 и сравнить их друг с другом. Напомним, что стандарт SATA III обратно совместим со стандартом SATA II, поэтому на базе контроллера Marvell 9128, поддерживающего диски с интерфейсом SATA III, можно также создавать RAID-массивы с использованием дисков с интерфейсом SATA II.

Стенд для тестирования имел следующую конфигурацию:

  • процессор - Intel Core i7-965 Extreme Edition;
  • материнская плата - Gigabyte GA-EX58A-UD7;
  • версия BIOS - F2a;
  • жесткие диски - два диска Western Digital WD1002FBYS, один диск Western Digital WD3200AAKS;
  • интегрированные RAID-контроллеры:
  • ICH10R,
  • GIGABYTE SATA2,
  • Marvell 9128;
  • память - DDR3-1066;
  • объем памяти - 3 Гбайт (три модуля по 1024 Мбайт);
  • режим работы памяти - DDR3-1333, трехканальный режим работы;
  • видеокарта - Gigabyte GeForce GTS295;
  • блок питания - Tagan 1300W.

Тестирование проводилось под управлением операционной системы Microsoft Windows 7 Ultimate (32-bit). Операционная система инсталлировалась на диск Western Digital WD3200AAKS, который подключался к порту контроллера SATA II, интегрированного в южный мост ICH10R. RAID-массив собирался на двух дисках WD1002FBYS с интерфейсом SATA II.

Для измерения скоростных характеристик создаваемых RAID-массивов мы использовали утилиту IOmeter, которая является отраслевым стандартом для измерения производительности дисковых систем.

Утилита IOmeter

Поскольку мы задумывали эту статью как своеобразное руководство пользователя по созданию и тестированию RAID-массивов, логично будет начать с описания утилиты IOmeter (Input/Output meter), которая, как мы уже отметили, является своеобразным отраслевым стандартом для измерения производительности дисковых систем. Данная утилита бесплатна, и ее можно скачать с ресурса http://www.iometer.org.

Утилита IOmeter является синтетическим тестом и позволяет работать с неразбитыми на логические разделы жесткими дисками, благодаря чему можно тестировать диски независимо от файловой структуры и свести к нулю влияние операционной системы.

При тестировании возможно создание специфической модели доступа, или «паттерна», которая позволяет конкретизировать выполнение жестким диском специфических операций. В случае создания конкретной модели доступа разрешается менять следующие параметры:

  • размер запроса на передачу данных;
  • случайное/последовательное распределение (в %);
  • распределение операций чтения/записи (в %);
  • количество отдельных операций ввода-вывода, работающих параллельно.

Утилита IOmeter не требует инсталляции на компьютер и состоит из двух частей: собственно IOmeter и Dynamo.

IOmeter - это контролирующая часть программы с пользовательским графическим интерфейсом, позволяющим производить все необходимые настройки. Dynamo - это генератор нагрузки, который не имеет интерфейса. Каждый раз при запуске файла IOmeter.exe автоматически запускается и генератор нагрузки Dynamo.exe.

Для того чтобы начать работу с программой IOmeter, достаточно запустить файл IOmeter.exe. При этом открывается главное окно программы IOmeter (рис. 1).

Рис. 1. Главное окно программы IOmeter

Нужно отметить, что утилита IOmeter позволяет производить тестирование не только локальных дисковых систем (DAS), но и сетевых накопителей (NAS). К примеру, с ее помощью можно протестировать производительность дисковой подсистемы сервера (файл-сервера), используя для этого несколько сетевых клиентов. Поэтому часть закладок и инструментов в окне утилиты IOmeter относится именно к сетевым настройкам программы. Понятно, что при тестировании дисков и RAID-массивов эти возможности программы нам не потребуются, а потому мы не станем объяснять назначение всех вкладок и инструментов.

Итак, при запуске программы IOmeter в левой части главного окна (в окне Topology) будет отображаться древовидная структура всех запущенных генераторов нагрузки (экземпляров Dynamo). Каждый запущенный экземпляр генератора нагрузки Dynamo называется менеджером (manager). Кроме того, программа IOmeter является многопотоковой и каждый отдельный запущенный поток экземпляра генератора нагрузки Dynamo называется Worker. Количество запущенных Worker’ов всегда соответствует количеству логических ядер процессора.

В нашем примере используется только один компьютер с четырехъядерным процессором, поддерживающим технологию Hyper-Threading, поэтому запускается лишь один менеджер (один экземпляр Dynamo) и восемь (по количеству логических ядер процессора) Worker’ов.

Собственно, для тестирования дисков в данном окне нет необходимости что-либо менять или добавлять.

Если выделить мышью название компьютера в древовидной структуре запущенных экземпляров Dynamo, то в окне Target на вкладке Disk Target отобразятся все диски, дисковые массивы и прочие накопители (включая сетевые), установленные в компьютере. Это те накопители, с которыми программа IOmeter может работать. Носители могут быть помечены желтым или голубым цветом. Желтым цветом отмечаются логические разделы носителей, а голубым - физические устройства без созданных на них логических разделов. Логический раздел может быть перечеркнут или не перечеркнут. Дело в том, что для работы программы с логическим разделом его нужно прежде подготовить, создав на нем специальный файл, равный по размеру емкости всего логического раздела. Если логический раздел перечеркнут, то это значит, что раздел еще не подготовлен для тестирования (он будет подготовлен автоматически на первом этапе тестирования), ну а если раздел не перечеркнут, то это означает, что на логическом разделе уже создан файл, полностью готовый для тестирования.

Отметим, что, несмотря на поддерживаемую возможность работы с логическими разделами, оптимально тестировать именно не разбитые на логические разделы диски. Удалить логический раздел диска можно очень просто - через оснастку Disk Management . Для доступа к ней достаточно щелкнуть правой кнопкой мыши на значке Computer на рабочем столе и в открывшемся меню выбрать пункт Manage . В открывшемся окне Computer Management в левой части необходимо выбрать пункт Storage , а в нем - Disk Management . После этого в правой части окна Computer Management отобразятся все подключенные диски. Щелкнув правой кнопкой по нужному диску и выбрав в открывшемся меню пункт Delete Volume …, можно удалить логический раздел на физическом диске. Напомним, что при удалении с диска логического раздела вся информация на нем удаляется без возможности восстановления.

Вообще, с помощью утилиты IOmeter тестировать можно только чистые диски или дисковые массивы. То есть нельзя протестировать диск или дисковый массив, на котором установлена операционная система.

Итак, вернемся к описанию утилиты IOmeter. В окне Target на вкладке Disk Target необходимо выбрать тот диск (или дисковый массив), который будет подвергаться тестированию. Далее необходимо открыть вкладку Access Specifications (рис. 2), на которой можно будет определить сценарий тестирования.

Рис. 2. Вкладка Access Specifications утилиты IOmeter

В окне Global Access Specifications имеется список предустановленных сценариев тестирования, которые можно присвоить менеджеру загрузки. Впрочем, эти сценарии нам не понадобятся, поэтому все их можно выделить и удалить (для этого предусмотрена кнопка Delete ). После этого нажмем на кнопку New , чтобы создать новый сценарий тестирования. В открывшемся окне Edit Access Specification можно определить сценарий загрузки диска или RAID-массива.

Предположим, мы хотим выяснить зависимость скорости последовательного (линейного) чтения и записи от размера блока запроса на передачу данных. Для этого нам нужно сформировать последовательность сценариев загрузки в режиме последовательного чтения при различных размерах блока, а затем последовательность сценариев загрузки в режиме последовательной записи при различных размерах блока. Обычно размеры блоков выбираются в виде ряда, каждый член которого вдвое больше предыдущего, а первый член этого ряда равен 512 байт. То есть размеры блоков составляют следующий ряд: 512 байт, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 Кбайт, 1 Мбайт. Делать размер блока больше 1 Мбайт при последовательных операциях нет смысла, поскольку при таких больших размерах блока данных скорость последовательных операций не изменяется.

Итак, сформируем сценарий загрузки в режиме последовательного чтения для блока размером 512 байт.

В поле Name окна Edit Access Specification вводим название сценария загрузки. Например, Sequential_Read_512. Далее в поле Transfer Request Size задаем размер блока данных 512 байт. Ползунок Percent Random/Sequential Distribution (процентное соотношение между последовательными и выборочными операциями) сдвигаем до упора влево, чтобы все наши операции были только последовательными. Ну а ползунок , задающий процентное соотношение между операциями чтения и записи, сдвигаем до упора вправо, чтобы все наши операции были только чтением. Остальные параметры в окне Edit Access Specification менять не нужно (рис. 3).

Рис. 3. Окно Edit Access Specification для создания сценария загрузки последовательного чтения
при размере блока данных 512 байт

Нажимаем на кнопку Ok , и первый созданный нами сценарий отобразится в окне Global Access Specifications на вкладке Access Specifications утилиты IOmeter.

Аналогично нужно создать сценарии и для остальных блоков данных, однако, чтобы облегчить себе работу, проще не создавать сценарий каждый раз заново, нажимая для этого кнопку New , а, выбрав последний созданный сценарий, нажать кнопку Edit Copy (редактировать копию). После этого опять откроется окно Edit Access Specification с настройками нашего последнего созданного сценария. В нем достаточно будет поменять лишь название и размер блока. Проделав аналогичную процедуру для всех остальных размеров блоков, можно приступить к формированию сценариев для последовательной записи, что делается совершенно аналогично, за исключением того, что ползунок Percent Read/Write Distribution , задающий процентное соотношение между операциями чтения и записи, нужно сдвинуть до упора влево.

Аналогично можно создать сценарии для выборочной записи и чтения.

После того как все сценарии будут готовы, их нужно присвоить менеджеру загрузки, то есть указать, с какими сценариями будет работать Dynamo .

Для этого еще раз проверяем, что в окне Topology выделено название компьютера (то есть менеджер нагрузки на локальном ПК), а не отдельный Worker. Это гарантирует, что сценарии нагрузки будут присваиваться сразу всем Worker’ам. Далее в окне Global Access Specifications выделяем все созданные нами сценарии нагрузки и нажимаем кнопку Add . Все выделенные сценарии нагрузки добавятся в окно (рис. 4).

Рис. 4. Присвоение созданных сценариев нагрузки менеджеру нагрузки

После этого нужно перейти к вкладке Test Setup (рис. 5), на которой можно задать время выполнения каждого созданного нами сценария. Для этого в группе Run Time задаем время выполнения сценария нагрузки. Вполне достаточно будет задать время, равное 3 мин.

Рис. 5. Задание времени выполнения сценария нагрузки

Кроме того, в поле Test Description необходимо указать название всего теста. В принципе, данная вкладка имеет массу других настроек, однако для наших задач они не нужны.

После того как все необходимые настройки произведены, рекомендуется сохранить созданный тест, нажав на панели инструментов на кнопку с изображением дискеты. Тест сохраняется с расширением *.icf. Впоследствии можно будет воспользоваться созданным сценарием нагрузки, запустив не файл IOmeter.exe, а сохраненный файл с расширением *.icf.

Теперь можно приступить непосредственно к тестированию, нажав на кнопку с изображением флажка. Вам будет предложено указать название файла с результатами тестирования и выбрать его местоположение. Результаты тестирования сохраняются в CSV-файле, который потом легко экспортировать в Excel и, установив фильтр по первому столбцу, выбрать нужные данные с результатами тестирования.

В ходе тестирования промежуточные результаты можно наблюдать на вкладке Result Display , а определить, к какому сценарию нагрузки они относятся, можно на вкладке Access Specifications . В окне Assigned Access Specification исполняемый сценарий отображается зеленым, выполненные сценарии - красным, а еще не выполненные сценарии - синим цветом.

Итак, мы рассмотрели базовые приемы работы с утилитой IOmeter, которые потребуются для тестирования отдельных дисков или RAID-массивов. Отметим, что мы рассказали далеко не обо всех возможностях утилиты IOmeter, но описание всех ее возможностей выходит за рамки данной статьи.

Создание RAID-массива на базе контроллера GIGABYTE SATA2

Итак, мы начинаем создание RAID-массива на базе двух дисков с использованием интегрированного на плате RAID-контроллера GIGABYTE SATA2. Конечно, сама компания Gigabyte не производит чипов, а потому под чипом GIGABYTE SATA2 скрывается перемаркированный чип другой фирмы. Как можно выяснить из INF-файла драйвера, речь идет о контроллере серии JMicron JMB36x.

Доступ в меню настройки контроллера возможен на этапе загрузки системы, для чего нужно нажать комбинацию клавиш Ctrl+G, когда появится соответствующая надпись на экране. Естественно, прежде в настройках BIOS нужно определить режим работы двух SATA-портов, относящихся к контроллеру GIGABYTE SATA2, как RAID (в противном случае доступ в меню конфигуратора RAID-массива будет невозможен).

Меню настройки RAID-контроллера GIGABYTE SATA2 довольно простое. Как мы уже отмечали, контроллер является двухпортовым и позволяет создавать RAID-массивы уровня 0 или 1. Через меню настройки контроллера можно удалить или создать RAID-массив. При создании RAID-массива имеется возможность указать его название, выбрать уровень массива (0 или 1), задать размер страйпа для RAID 0 (128, 84, 32, 16, 8 или 4K), а также определить размер массива.

Если массив создан, то какие-либо изменения в нем уже невозможны. То есть нельзя впоследствии для созданного массива изменить, например, его уровень или размер страйпа. Для этого прежде нужно удалить массив (с потерей данных), а потом создать его заново. Собственно, это свойственно не только контроллеру GIGABYTE SATA2. Невозможность изменения параметров созданных RAID-массивов - особенность всех контроллеров, которая вытекает из самого принципа реализации RAID-массива.

После того как массив на базе контроллера GIGABYTE SATA2 создан, текущую информацию о нем можно просмотреть, используя утилиту GIGABYTE RAID Configurer, которая устанавливается автоматически вместе с драйвером.

Создание RAID-массива на базе контроллера Marvell 9128

Конфигурирование RAID-контроллера Marvell 9128 возможно только через настройки BIOS платы Gigabyte GA-EX58A-UD7. Вообще, нужно сказать, что меню конфигуратора контроллера Marvell 9128 несколько сыровато и может ввести в заблуждение неискушенных пользователей. Впрочем, об этих незначительных недоработках мы расскажем чуть позже, а пока рассмотрим основные функциональные возможности контроллера Marvell 9128.

Итак, несмотря на то что этот контроллер поддерживает работу с дисками с интерфейсом SATA III, он также полностью совместим с дисками с интерфейсом SATA II.

Контроллер Marvell 9128 позволяет создать RAID-массив уровней 0 и 1 на базе двух дисков. Для массива уровня 0 можно задать размер страйпа 32 или 64 Кбайт, а также указать имя массива. Кроме того, имеется и такая опция, как Gigabyte Rounding, которая нуждается в пояснении. Несмотря на название, созвучное с именем компании-производителя, функция Gigabyte Rounding никакого отношения к ней не имеет. Более того, она никак не связана с RAID-массивом уровня 0, хотя в настройках контроллера ее можно определить именно для массива этого уровня. Собственно, это первая из тех недоработок конфигуратора контроллера Marvell 9128, о которых мы упоминали. Функция Gigabyte Rounding определена только для RAID-массива уровня 1. Она позволяет использовать для создания RAID-массива уровня 1 два диска (например, различных производителей или разные модели), емкость которых немного отличается друг от друга. Функция Gigabyte Rounding как раз и задает разницу в размерах двух дисков, применяемых для создания RAID-массива уровня 1. В контроллере Marvell 9128 функция Gigabyte Rounding позволяет установить разницу в размерах дисков 1 или 10 Гбайт.

Еще одна недоработка конфигуратора контроллера Marvell 9128 заключается в том, что при создании RAID-массива уровня 1 у пользователя имеется возможность выбора размера страйпа (32 или 64 Кбайт). Однако понятие страйпа вообще не определено для RAID-массива уровня 1.

Создание RAID-массива на базе контроллера, интегрированного в ICH10R

RAID-контроллер, интегрированный в южный мост ICH10R, является самым распространенным. Как уже отмечалось, данный RAID-контроллер 6-портовый и поддерживает не только создание массивов RAID 0 и RAID 1, но также RAID 5 и RAID 10.

Доступ в меню настройки контроллера возможен на этапе загрузки системы, для чего нужно нажать комбинацию клавиш Ctrl+I, когда появится соответствующая надпись на экране. Естественно, прежде в настройках BIOS следует определить режим работы этого контроллера как RAID (в противном случае доступ в меню конфигуратора RAID-массива будет невозможен).

Меню настройки RAID-контроллера достаточно простое. Через меню настройки контроллера можно удалить или создать RAID-массив. При создании RAID-массива можно указать его название, выбрать уровень массива (0, 1, 5 или 10), задать размер страйпа для RAID 0 (128, 84, 32, 16, 8 или 4K), а также определить размер массива.

Сравнение производительности RAID-массивов

Для тестирования RAID-массивов с помощью утилиты IOmeter мы создали сценарии нагрузки последовательного чтения, последовательной записи, выборочного чтения и выборочной записи. Размеры блоков данных в каждом сценарии нагрузки составляли следующую последовательность: 512 байт, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 Кбайт, 1 Мбайт.

На каждом из RAID-контроллеров создавался массив RAID 0 со всеми допустимыми размерами страйпов и массив RAID 1. Кроме того, дабы иметь возможность оценить прирост производительности, получаемый от использования RAID-массива, мы также протестировали на каждом из RAID-контроллеров одиночный диск.

Итак, обратимся к результатам нашего тестирования.

Контроллер GIGABYTE SATA2

Прежде всего рассмотрим результаты тестирования RAID-массивов на базе контроллера GIGABYTE SATA2 (рис. 6-13). В общем-то контроллер оказался в буквальном смысле загадочным, а его производительность просто разочаровала.

Рис. 6. Скорость последовательных
и выборочных операций для диска
Western Digital WD1002FBYS

Рис. 7. Скорость последовательных

c размером страйпа 128 Кбайт
(контроллер GIGABYTE SATA2)

Рис. 12. Скорость последовательных
и выборочных операций для RAID 0
c размером страйпа 4 Кбайт
(контроллер GIGABYTE SATA2)

Рис. 13. Скорость последовательных
и выборочных операций
для RAID 1 (контроллер GIGABYTE SATA2)

Если посмотреть на скоростные характеристики одного диска (без RAID-массива), то максимальная скорость последовательного чтения составляет 102 Мбайт/с, а максимальная скорость последовательной записи - 107 Мбайт/с.

При создании массива RAID 0 с размером страйпа 128 Кбайт максимальная скорость последовательного чтения и записи увеличивается до 125 Мбайт/с, то есть возрастает примерно на 22%.

При размере страйпа 64, 32 или 16 Кбайт максимальная скорость последовательного чтения составляет 130 Мбайт/с, а максимальная скорость последовательной записи - 141 Мбайт/с. То есть при указанных размерах страйпа максимальная скорость последовательного чтения возрастает на 27%, а максимальная скорость последовательной записи - на 31%.

Вообще-то это маловато для массива уровня 0, и хотелось бы, чтобы максимальная скорость последовательных операций была выше.

При размере страйпа 8 Кбайт максимальная скорость последовательных операций (чтения и записи) остается примерно такой же, как и при размере страйпа 64, 32 или 16 Кбайт, однако с выборочным чтением - явные проблемы. При увеличении размера блока данных вплоть до 128 Кбайт скорость выборочного чтения (как и должно быть) возрастает пропорционально размеру блока данных. Однако при размере блока данных более 128 Кбайт скорость выборочного чтения падает практически до нуля (примерно до 0,1 Мбайт/с).

При размере страйпа 4 Кбайт падает не только скорость выборочного чтения при размере блока более 128 Кбайт, но и скорость последовательного чтения при размере блока более 16 Кбайт.

Использование массива RAID 1 на контроллере GIGABYTE SATA2 практически не изменяет (в сравнении с одиночным диском) скорость последовательного чтения, однако максимальная скорость последовательной записи уменьшается до 75 Мбайт/с. Напомним, что для массива RAID 1 скорость чтения должна возрастать, а скорость записи не должна уменьшаться в сравнении со скоростью чтения и записи одиночного диска.

На основании результатов тестирования контроллера GIGABYTE SATA2 можно сделать только один вывод. Использовать данный контроллер для создания массивов RAID 0 и RAID 1 имеет смысл только в том случае, когда все остальные RAID-контроллеры (Marvell 9128, ICH10R) уже задействованы. Хотя представить себе подобную ситуацию довольно сложно.

Контроллер Marvell 9128

Контроллер Marvell 9128 продемонстрировал гораздо более высокие скоростные характеристики в сравнении с контроллером GIGABYTE SATA2 (рис. 14-17). Собственно, различия проявляются даже при работе контроллера с одним диском. Если для контроллера GIGABYTE SATA2 максимальная скорость последовательного чтения составляет 102 Мбайт/с и достигается при размере блока данных 128 Кбайт, то для контроллера Marvell 9128 максимальная скорость последовательного чтения составляет 107 Мбайт/с и достигается при размере блока данных 16 Кбайт.

При создании массива RAID 0 с размером страйпа 64 и 32 Кбайт максимальная скорость последовательного чтения увеличивается до 211 Мбайт/с, а последовательной записи - до 185 Мбайт/с. То есть при указанных размерах страйпа максимальная скорость последовательного чтения возрастает на 97%, а максимальная скорость последовательной записи - на 73%.

Существенной разницы по скоростным показателям массива RAID 0 с размером страйпа 32 и 64 Кбайт не наблюдается, однако применение страйпа 32 Кбайт более предпочтительно, поскольку в этом случае скорость последовательных операций при размере блока менее 128 Кбайт будет немного выше.

При создании массива RAID 1 на контроллере Marvell 9128 максимальная скорость последовательных операций практически не изменяется в сравнении с одиночным диском. Так, если для одиночного диска максимальная скорость последовательных операций составляет 107 Мбайт/с, то для RAID 1 она равна 105 Мбайт/с. Также заметим, что для RAID 1 скорость выборочного чтения немного ухудшается.

В целом же нужно отметить, что контроллер Marvell 9128 обладает неплохими скоростными характеристиками и его вполне можно задействовать как для создания RAID-массивов, так и для подключения к нему одиночных дисков.

Контроллер ICH10R

RAID-контроллер, встроенный в ICH10R, оказался самым высокопроизводительным из всех протестированных нами (рис. 18-25). При работе с одиночным диском (без создания RAID-массива) его производительность фактически такая же, как и производительность контроллера Marvell 9128. Максимальная скорость последовательного чтения и записи составляет 107 Мбайт и достигается при размере блока данных 16 Кбайт.

Рис. 18. Скорость последовательных
и выборочных операций
для диска Western Digital WD1002FBYS (контроллер ICH10R)

Если говорить о массиве RAID 0 на контроллере ICH10R, то максимальная скорость последовательного чтения и записи не зависит от размера страйпа и составляет 212 Мбайт/с. От размера страйпа зависит лишь размер блока данных, при котором достигается максимальное значение скорости последовательного чтения и записи. Как показывают результаты тестирования, для RAID 0 на базе контроллера ICH10R оптимально использовать страйп размером 64 Кбайт. В этом случае максимальное значение скорости последовательного чтения и записи достигается при размере блока данных всего 16 Кбайт.

Итак, резюмируя, еще раз подчеркнем, что RAID-контроллер, встроенный в ICH10R, существенно превосходит по производительности все остальные интегрированные RAID-контроллеры. А учитывая, что он обладает и большей функциональностью, оптимально использовать именно этот контроллер и просто забыть о существовании всех остальных (если, конечно, в системе не применяются диски SATA III).