Опасность электрических сетей трех и однофазных. Однофазное включение человека в электрическую сеть

Опасность электрических сетей трех и однофазных. Однофазное включение человека в электрическую сеть
Опасность электрических сетей трех и однофазных. Однофазное включение человека в электрическую сеть

Анализ опасности поражения электрическим током в различных сетях

Поражение человека электротоком возможно лишь при его непосредственном контакте с точками электроустановки, между которыми существует напряжение, или с точкой, потенциал которой отличается от потенциала земли. Анализ опасности такого прикосновения, оцениваемой величиной проходящего через человека тока или напряжением прикосновения, зависит от ряда факторов: схемы включения человека в электросеть, ее напряжения, режима нейтрали, изоляции токоведущих частей, их емкостной составляющей и т. п.


При изучении причин поражения током необходимо различать прямой контакт с токоведущими частями электроустановок и косвенный. Первый, как правило, возникает при грубейших нарушениях правил эксплуатации электроустановок (ПТЭ и ПТБ), второй - в результате аварийных ситуаций, например при пробое изоляции.


Схемы включения человека в электрическую цепь могут быть различными. Однако наиболее распространенными являются две: между двумя различными проводами - двухфазное включение и между одним проводом или корпусом электроустановки, одна фаза которой пробита, и землей - однофазное включение.


Статистика показывает, что наибольшее число электротравм происходит при однофазном включении, причем большинство из них - в сетях напряжением 380/220 В. Двухфазное включение является более опасным, поскольку в данном случае человек находится под линейным напряжением, при этом сила тока, проходящего через человека, составит (в А)


где Uл - линейное напряжение, т.е. напряжение между фазными проводами, В; Uф - фазное напряжение, т.е. напряжение между началом и концом одной обмотки (или между фазным и нулевым проводом), В.


Как видно из рис. 8.1, опасность двухфазного включения не зависит от режима нейтрали. Нейтралью называется точка соединения обмоток трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через аппараты с большим сопротивлением (сеть с изолированной нейтралью), либо непосредственно соединенная с заземляющим устройством - сеть с глухозаземленной нейтралью.


При двухфазном включении ток, проходящий через тело человека, не уменьшится при изолировании человека от земли с использованием диэлектрических галош, бот, ковриков, полов.


При однофазном же включении человека в сеть сила тока во многом определяется режимом нейтрали. Для рассматриваемого случая сила тока, проходящего через человека, составит (в А)



, (8.3)

где w - частота; С - емкость фаз относительно земли


Рис. 8.1. Включение человека в трехфазную сеть с изолированной нейтралью:
а - двухфазное включение; б - однофазное включение; Ra, Rt, Rc - электросопротивление изоляции фаз относительно земли. Ом; Са, Сb, Сс - емкость проводов относительно земли, Ф, Ia, Ib, IС токи, стекающие на землю через сопротивление изоляции фаз (токи утечки)


Для упрощения формулы принято, что Ra = Rb = Rc = Rиз, а Са = Cb = Cc = С.


В производственных условиях изоляция фаз, изготовленная из диэлектрических материалов и имеющая конечную величину, в процессе старения, увлажнения, покрытия пылью изменяется у каждой фазы неодинаково. Поэтому расчет безопасных условий, который в значительной степени осложняется, необходимо вести с учетом реальных значений сопротивления R и емкостей С для каждой фазы. Если емкость фаз относительно земли мала, т. е. Са = Cb = Сс = 0 (например, в воздушных сетях небольшой протяженности), то


Iч = Uф/(Rч+Rиз/3), (8.4)


Если же емкость велика (Са = Сь = Сс не равно 0) и Rиз велико (например, в кабельных линиях), то сила тока, протекающего через тело человека, будет определяться только емкостной составляющей:


, (8.5)

где Хс = 1/wС- емкостное сопротивление, Ом.


Из приведенных выражений видно, что в сетях с изолированной нейтралью опасность поражения человека током тем меньше, чем меньше емкостная и выше активная составляющая фазных проводов относительно земли. Поэтому в таких сетях весьма важно постоянно контролировать Rиз для выявления и устранения повреждений.


Рис. 8.2. Включение человека в трехфазную сеть с изолированной нейтралью при аварийном режиме. Пояснения в тексте


Если емкостная составляющая велика, то высокое сопротивление изоляции фаз не обеспечивает необходимой защиты.


В случае аварийной ситуации (рис. 8.2), при замыкании одной из фаз на землю, сила тока, проходящего через человека, будет равна (в А)


Если принять, что Rзм = 0 или Rзм << Rч (что бывает в реальных аварийных условиях), то, исходя из приведенного выражения, человек окажется под линейным напряжением, т. е. попадет под двухфазное включение. Однако чаще всего R3M не равно 0, поэтому человек будет находиться под напряжением, меньшим Uл, но большим Uф, при условии, что Rиз/3 >> Rзм.


Замыкание на землю существенным образом изменяет и напряжение токоведущих частей электроустановки относительно земли и заземленных конструкций здания. Замыкание на землю всегда сопровождается растеканием тока в грунте, что, в свою очередь, приводит к возникновению нового вида поражения человека, а именно попадание под напряжение прикосновения и напряжение шага. Такое замыкание может быть случайным или преднамеренным. В последнем случае проводник, находящийся в контакте с землей, называется заземлителем или электродом.


В объеме земли, где проходит ток, возникает так называемое """поле (зона) растекания тока". Теоретически оно простирается до бесконечности, однако в реальных условиях уже на расстоянии 20 м от заземлителя плотность тока растекания и потенциал практически равны нулю.


Характер потенциальной кривой растекания существенным образом зависит от формы заземлителя. Так, для одиночного полусферического заземлителя потенциал на поверхности земли будет изменяться по гиперболическому закону (рис. 8.3).


Рис. 8.3. Распределение потенциала на поверхности земли вокруг полушарового заземлителя (ф - изменение потенциала заземлителя на поверхности земли; фз -максимальный потенциал заземлителя при силе тока замыкания на землю I3; r - радиус заземлителя)


Рис. 8.4. Напряжение прикосновения при одиночном заземлителе (ф3 - суммарное сопротивление грунта растеканию тока от заземлителя):
1 - потенциальная кривая; 2 - кривая, характеризующая изменение Uпр по мере удаления от заземлителя; 3 - пробой фазы на корпус


В зависимости от места нахождения человека в зоне растекания и его контакта с электроустановкой б, корпус которой заземлен и находится под напряжением, человек может попасть под напряжение прикосновения Uпр (рис. 8.4), определяемое как разность потенциалов между точкой электроустановки, которой касается человек ф3, и точкой грунта, на которой он стоит - фосн (в В)


Uпр = ф3 - фосн = ф3 (1 - фосн/ф3), (8.7)


где выражение (1 - фосн/ф3) = а1 представляет собой коэффициент напряжения прикосновения, характеризующий форму потенциальной кривой.


Из рис. 8.4 видно, что напряжение прикосновения будет максимальным при удалении человека от заземлителя на 20 м и более (электроустановка в) и численно равно потенциалу заземлителя Uпр = ф3, при этом а1 = I. Если же человек стоит непосредственно над заземлителем (электроустановка а), то Unp = 0 и а1 =0. Это самый безопасный случай.


Выражение (8.7) позволяет вычислить Unp без учета дополнительных сопротивлений в цепи человек - земля, т. е. без учета сопротивления обуви, сопротивления опорной поверхности ног и сопротивления пола. Все это учитывается коэффициентом а2, поэтому в реальных условиях величина напряжения прикосновения будет еще меньше.

Протекание постоянного тока по телу человека вызывает болевое ощущение в месте прикосновения и в суставах конечностей. Как правило, воздействие постоянного тока на организм человека вызывает ожоги или болевой шок, который в тяжелых случаях может привести к остановке дыхания или сердца.

В случае прикосновения человека к однофазным или двухфазным сетям переменного тока при любом режиме сети относительно земли (изолированная от земли, с заземленным полюсом, с заземленной средней точкой), т.к. в этом случае ток, протекающий через человека, определяется только электрическим сопротивлением его тела.

Степень опасности и исход поражения электрическим током зависят: от схемы «подключения» человека в электрическую цепь; на электрической сети:

трехфазная четырехпроводная с заземленной нейтралью;

трехфазная с изолированной нейтралью.

Поражение человека электрическим током может быть вызвано однополюсным (однофазным) или двухполюсным (двухфазным) прикосновением к токоведущей части установки.

Однофазное подключение является менее опасным, чем двухфазное, однако оно возникает значительно чаще и является основной причиной электротравматизма. На исход поражения в этом случае оказывает решающее влияние режим нейтрали электросети.

При прикосновении к одной из фаз сети с изолированной нейтралью последовательно с сопротивлением человека оказываются включенными сопротивления изоляции и емкости относительно земли двух других неповрежденных фаз.

Схема прикосновения человека к одной фазе сети с заземленной нейтралью

С увеличением сопротивления изоляции опасность поражения электрическим током уменьшается.

При аварийном режиме работы этой же сети, когда возникает глухое замыкание фазы на землю, напряжение в нейтральной точке может достигать фазного напряжения, напряжение неповрежденных фаз относительно земли становится равным линейному напряжению. В этом случае, если человек прикоснется к одной фазе, он окажется под линейным напряжением, через него пойдет ток по пути «рука - нога». В данной ситуации на исход поражения сопротивление изоляции проводов не играет никакой роли. Такое поражение током чаще всего приводит к летальному исходу.

Примеры свидетельствуют о том, что при прочих равных условиях однофазное подключение человека в сеть с изолированной нейтралью менее опасно, чем в сеть с заземленной нейтралью.

Наиболее опасным является двухфазное подключение человека в электрическую сеть, так как он попадает под линейное напряжение сети вне зависимости от режима нейтрали и условий эксплуатации сети.

7.9. Продолжитель­ность воздействия тока.

Продолжительность воздействия тока часто является фактором, от которого зависит конечный исход поражения. Чем продолжительнее воздействие электрического тока на организм человека, тем тяжелее последствия поражения. Через 30с сопротивление тела человека протеканию тока падает примерно на 25 %, а через 90с - на 70 %.

Установлено, что поражение электрическим током возможно лишь в стоянии полного покоя сердца человека, когда отсутствуют сжатие (систола) или расслабление (диастола) желудочков сердца и предсердий. Поэтому при малом времени воздействие тока может не совпадать с фазой полного расслабления, однако всё, что увеличивает темп работы сердца, способствует повышению вероятности остановки сердца при ударе током любой длительности. К таким причинам следует отнести: усталость, возбуждение, голод, жажду, испуг, принятие алкоголя, наркотиков, некоторых лекарств, курение, болезни и т.п.

Так как от сопротивления электрической цепи R существен­но зависит величина электрического тока, проходящего через человека, то тяжесть поражения во многом определяется схемой включения человека в цепь. Схемы образующихся при контакте человека с проводником цепей зависят от вида применяемой системы электроснабжения.

Наиболее распространены электрические сети, в которых ну­левой провод заземлен, т. е. накоротко соединен проводником с землей. Прикосновение к нулевому проводу практически не представляет опасности для человека, опасен только фазный провод. Однако разобраться, какой из двух проводов нулевой, сложно - по виду они одинаковы. Разобраться можно используя специальный прибор - определитель фазы.

На конкретных примерах рассмотрим возможные схемы включения человека в электрическую цепь при прикосновении к проводникам.

Двухфазное включение в цепь. Наиболее редким, но и наиболее опасным, является прикосновение человека к двум фазным про­водам или проводникам тока, соединенным с ними (рис. 2.29).

В этом случае человек окажется под действием линейного напряжения. Через человека потечет ток по пути «рука-рука», т. е. сопротивление цепи будет включать только сопротивление тела (Д,).




Если принять сопротивление тела в 1 кОм, а электрическую сеть напряжением 380/220 В, то сила тока, проходящего через че­ловека, будет равна

Это смертельно опасный ток. Тяжесть электротравмы или даже жизнь человека будет зависить прежде всего от того, как быстро он освободится от контакта с проводником тока (разо­рвет электрическую цепь), ибо время воздействия в этом случае является определяющим.

Значительно чаще встречаются случаи, когда человек одной рукой соприкасается с фазным проводом или частью прибора, аппарата, который случайно или преднамеренно электрически соединен с ним. Опасность поражения электрическим током в этом случае зависит от вида электрической сети (с заземленной или изолированной нейтралью).

Однофазное включение в цепь в сети с заземленной нейтралью (рис. 2.30). В этом случае ток проходит через человека по пути «рука-ноги» или «рука-рука», а человек будет находиться под фазным напряжением.

В первом случае сопротивление цепи будет определяться со­противлением тела человека (I_, обуви (R o 6), основания (R ж), на котором стоит человек, сопротивлением заземления нейтрали (R H), и через человека потечет ток

Сопротивление нейтрали R H невелико, и им можно пренебречь по сравнению с другими сопротивлениями цепи. Для оцен­ки величины протекающего через человека тока примем напря­жение сети 380/220 В. Если на человеке надета изолирующая су­хая обувь (кожаная, резиновая), он стоит на сухом деревянном полу, сопротивление цепи будет большим, а сила тока по закону Ома небольшой.

Например, сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм. Ток, проходящий через человека

Этот ток близок к пороговому ощутимому току. Человек по­чувствует протекание тока, прекратит работу, устранит неис­правность.

Если человек стоит на влажной земле в сырой обуви или боси­ком, через тело будет проходить ток

Этот ток может вызвать нарушение в работе легких и сердца, а при длительном воздействии и смерть.

Если человек стоит на влажной почве в сухих и целых резино­вых сапогах, через тело проходит ток

Воздействие такого тока человек может даже не почувство­вать. Однако даже небольшая трещина или прокол на подошве сапога может резко уменьшить сопротивление резиновой по­дошвы и сделать работу опасной.

Перед тем как приступить к работе с электрическими устройствами (особенно длительное время не находящимися в эксплуатации), их необходи­мо тщательно осмотреть на предмет отсутствия повреждений изоляции. Электрические устройства необходимо протереть от пыли и, если они влажные - просушить. Мокрые электрические устройства эксплуатиро­вать нельзя! Электрический инструмент, приборы, аппаратуру лучше хра­нить в полиэтиленовых пакетах, чтобы исключить попадание в них пыли или влаги. Работать надо в обуви. Если надежность электрического уст­ройства вызывает сомнения, надо подстраховаться - подложить под ноги сухой деревянный настил или резиновый коврик. Можно использовать рези­новые перчатки.

Второй путь протекания тока возникает тогда, когда второй рукой человек соприкасается с электропроводящими предмета­ми, соединенными с землей (корпусом заземленного станка, ме­таллической или железобетонной конструкцией здания, влажной деревянной стеной, водопроводной трубой, отопительной бата­реей и т. п.). В этом случае ток протекает по пути наименьшего электрического сопротивления. Указанные предметы практически накоротко соединены с землей, их электрическое сопротив­ление очень мало. Поэтому сопротивление цепи равно сопро­тивлению тела и через человека потечет ток

Эта величина тока смертельно опасна.

При работе с электрическими устройствами не прикасайтесь второй рукой к предметам, которые могут быть электрически соединены с землей. Работа в сырых помещениях, при наличии вблизи от человека хорошо прово­дящих предметов, соединенных с землей, представляет исключительно вы­сокую опасность и требует соблюдения повышенных мер электрической безопасности.

В аварийном режиме (рис. 2.30, б), когда одна из фаз сети (другая фаза сети, отличная от фазы, к которой прикоснулся че­ловек) оказалась замкнутой на землю, происходит перераспреде­ление напряжения, и напряжение исправных фаз отличается от фазного напряжения сети. Прикасаясь к исправной фазе, чело­век попадает под напряжение, которое больше фазного, но меньше линейного. Поэтому при любом пути протекания тока этот случай более опасен.

Однофазное включение в цепь в сети с изолированной нейтра­лью (рис. 2.31). На производстве для электроснабжения силовых электроустановок находят применение трехпроводные электри­ческие сети с изолированной нейтралью. В таких сетях отсутст­вует четвертый заземленный нулевой провод, а имеются только три фазных провода. На этой схеме прямоугольниками условно показаны электрические сопротивления r А, r в , r с изоляции про­вода каждой фазы и емкости С А, С в, С с каждой фазы относи__________________________

находящимися под значительно большими напряжениями, а значит, и более опасными. Однако основные выводы и рекомен­дации для обеспечения безопасности практически такие же.

Даже если не учитывать сопротивление цепи человека (человек стоит на влажной земле в сырой обуви), проходящий через человека ток будет безопасен:

Таким образом, хорошая изоляция фаз является залогом обеспечения безопасности. Однако при разветвленных электри­ческих сетях добиться этого нелегко. У протяженных и разветв­ленных сетей с большим числом потребителей сопротивление изоляции мало, и опасность возрастает.

Для протяженных электрических сетей, особенно кабельных линий, емкостью фаз нельзя пренебрегать (CV0). Даже при очень хорошей изоляции фаз (г=оо) ток потечет через человека через емкостное сопротивление фаз, и его величина будет опре­деляться по формуле:

Таким образом, протяженные электрические цепи промыш­ленных предприятий, обладающие высокой емкостью, обладают высокой опасностью, даже при хорошей изоляции фаз.

При нарушении же изоляции какой-либо фазы прикоснове­ние к сети с изолированной нейтралью становится более опас­ным, чем к сети с заземленным нулевым проводом. В аварийном режиме работы (рис. 2.31, б) ток, проходящий через человека, прикоснувшегося к исправной фазе, будет стекать по цепи за­мыкания на земле на аварийную фазу, и его величина будет оп­ределяться формулой:

Так как сопротивление замыкания Д, аварийной фазы на земле обычно мало, то человек будет находиться под линейным напряжением, а сопротивление образовавшейся цепи будет рав­но сопротивлению цепи человека ____, что очень опасно.

По этим соображениям, а также из-за удобства использова­ния (возможность получения напряжения 220 и 380 В) четырех-проводные сети с заземленным нулевым проводом на напряже­ние 380/220 В получили наибольшее распространение.

Мы рассмотрели далеко не все возможные схемы электриче­ских сетей и варианты прикосновения. На производстве вы мо­жете иметь дело с более сложными схемами электроснабжения, тельно земли.

Для упрощения анализа примем г А - г в = г с = г, а С А = L B = С с = С

Если человек прикоснется к одному из проводов или к како­му-нибудь предмету, электрически соединенному с ним, ток по­течет через человека, обувь, основание и через изоляцию и ем­кость проводов будет стекать на два других провода. Таким обра­зом, образуется замкнутая электрическая цепь, в которую, в отличие от ранее рассмотренных случаев, включено сопротивле­ние изоляции фаз. Так как электрическое сопротивление ис­правной изоляции составляет десятки и сотни килоом, то общее электрическое сопротивление цепи значительно больше сопро­тивления цепи, образующейся в сети с заземленным нулевым проводом. Т. е. ток через человека в такой сети будет меньше, и прикосновение к одной из фаз сети с изолированной нейтралью безопаснее.

Ток через человека в этом случае определяется по следую­щей формуле:

где- электрическое сопротивление цепи человека,

со = 2я - круговая частота тока, рад/с (для тока про­мышленной частоты= 50 Гц, поэтому со = ЮОл).

Если емкость фаз невелика (это имеет место для непротя­женных воздушных сетей), можно принять С« 0. Тогда выраже­ние для величины тока через человека примет вид:

Например, если сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм, а сопротивление изоляции фаз 300 к Ом, ток, который проходит через человека (для сети 380/220 В), будет равен

Такой ток человек может даже не почувствовать.

Контрольные вопросы

1. Какие типы электрических сетей наиболее распространены на произ­водстве?

2. Назовите источники электрической опасности на производстве.

3. Что такое напряжение прикосновения и шаговое напряжение? Как за­висят их величины от расстояния от точки стекания тока в землю?

4. Как классифицируются помещения по степени электрической опасности?

5. Как воздействует электрический ток на человека? Перечислите и оха­рактеризуйте виды электротравм.

6. Какие параметры электрического тока определяют тяжесть пораже­ния электрическим током? Укажите пороговые величины силы тока.

7. Какой путь протекания электрического тока через тело человека наи­более опасен?

8. Укажите источники наибольшей электрической опасности на произ­водстве, связанном с вашей будущей профессией.

9. Сделайте анализ опасности электрических сетей с заземленной ней­тралью.

10.Дайте анализ опасности электрических сетей с изолированной ней­тралью.

11.Какое прикосновение к проводникам, находящимся под напряжени­ем, наиболее опасно для человека?

12.Почему прикосновение рукой к предметам электрически соединен­ным с землей (например, водопроводной трубой) при работе с элек­трическими устройствами резко увеличивает опасность поражения электрическим током?

13.Почему при ремонте электрической аппаратуры нужно вынимать электрическую вилку из розетки?

14.Почему при работе с электрическими устройствами необходимо на­девать обувь?

15.Как можно уменьшить опасность поражения электрическим током?

Большой процент травм, вызванных воздействием электрического тока, имеет место при прикосновении человека к металлическим частям или корпусам электроустановок, случайно оказавшимся под напряжением вследствие неисправности изоляции.

Тяжесть электротравмы зависит от тока, протекающего через тело человека, частоты тока, физиологического состояния организма, продолжительности воздействия тока, пути тока в организме и производственных условий.

При этом человек оказывается под напряжением прикосновения - напряжением между двумя точками цепи тока замыкания на землю (на корпус) при одновременном к ним прикосновении

где - ток, протекающий через тело человека, А;

-сопротивление тела человека, Ом.

Предельно допустимые значения напряжений прикосновения и токов, протекающих через тело человека, предназначенные для проектирования способов и средств защиты людей, при взаимодействии их с электроустановками нормируются /2/ и при аварийном режиме производственных электроустановок напряжением до 1000 В переменного 50 Гц тока при продолжительности воздействия свыше 1 с не должны превышать
= 20 В и= 6 мА.

Значения напряжений прикосновения и тока, протекающего через тело человека, зависят от ряда факторов: схемы включения человека в электрическую сеть, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, а также емкости токоведущих частей относительно земли и т.п. Эту зависимость необходимо знать при оценке той или иной сети по условиям техники безопасности, выборе и расчете соответствующих мер защиты и т.п.

При этом принимаем, что сопротивление основания, на котором стоит человек (грунт, пол и пр.), а также сопротивление его обуви незначительны, и равны нулю.

Сопротивление тела человека изменяется в широких пределах (от 400 до 100000 Ом) в зависимости от состояния кожи (сухая, влажная, чистая, поврежденная и т.п.), плотности контакта, площади контакта, тока, протекающего через тело человека и напряжения прикосновения, а также от времени воздействия тока на человека.

При напряжении до 1000 В в нашей стране применяют, в основном, две схемы сетей трехфазного тока - четырехпроводную с заземленной нейтралью напряжением 220/127, 380/220 и 660/380 В и трехпроводную с изолированной нейтралью напряжением 36, 42, 127, 220, 380 и 660 В.

Проанализируем опасность поражения током при нормальном режиме работы сетей.

2.1. Трехфазная четырехпроводная сеть с глухозаземленной нейтралью

Рассмотрим сеть напряжением 380/220 В (рис.1).

Прикосновение человека к корпусу электроустановки, оказавшемуся под напряжением, в четырехпроводной сети

При нормальном режиме работы сети сопротивление изоляции фазных и нулевого проводов относительно земли по сравнению с сопротивлением заземления нейтрали имеют весьма большие значения и с некоторым допущением могут быть приравнены к бесконечности, т.е.
.

В этом случае ток, протекающий через тело человека

где = 220 В - фазное напряжение, т.е. в данном случае напряжение между началом и концом одной обмотки трансформатора.

- сопротивление заземляющего устройства, к которому присоединена нейтраль трансформатора, Ом.

В соответствии с ПУЭ /1/ наибольшее значение составляет 66 Ом; сопротивление же тела человека, не опускается ниже нескольких сотен Ом. Следовательно, без большой ошибки можно пренебречь значением, т.е.

Таким образом, про прикосновении к корпусу электроустановка, оказавшемуся под напряжением в сети с глухозаземленной нейтралью, человек оказывается практически, под фазным напряжением, т.е. в данном случае под напряжением между фазным и нулевым проводом.

Включение человека в электрическую сеть может быть однофазным и двухфазным. Однофазное включение представляет собой подключение человека между одной из фаз сети и землей. Сила поражающего тока в этом случае зависит от режима нейт­рали сети, сопротивлений человека, обуви, пола, изоляции фаз относительно земли. Однофазное включение возникает значитель­но чаще и часто служит причиной электрических травм в сетях любого напряжения. При двухфазном включении человек прикасается к двум фа­зам электрической сети. При двухфазном включении сила тока, протекающего через тело (поражающий ток), зависит лишь от напряжения сети и сопротивления тела человека и не зависит от режима нейтрали питающего трансформатора сети. Электрические сети делят на однофазные и трехфазные. Однофазная сеть может быть изолирована от земли или иметь заземленный провод. На рис. 1 изображены возможные варианты подключения человека к однофазным сетям.

Таким образом, если человек прикоснется к одной из фаз трех­фазной четырехпроводной сети с глухозаземленной нейтралью, то он окажется практически под фазным напряжением (R3≤ RЧ) и сила тока, проходящего через человека при нормальной работе сети, практически не изменится с изменением сопротивления изо­ляции и емкости проводов отно­сительно земли.

Воздействие электрического тока на организм человека

Проходя через организм, электрический ток оказывает термическое, электролитическое и биологическое действие.

Термическое действие проявляется в ожогах кожного покрова или внутренних органов.

При электролитической действия вследствие прохождения тока происходит разложение (электролиз) крови и другой органической жидкости, сопровождающееся разрушением эритроцитов и нарушением обмена веществ.

Биологическое действие выражается в раздражении и возбуждении живых тканей организма, что сопровождается самопроизвольным судорожным сокращением мышц, в том числе сердца и легких.

Различают два основных вида поражения электрическим током:



§ электрические травмы,

§ электрические удары.

Электрические удары могут быть условно разделены на четыре степени:

1. судорожные сокращения мышц без потери сознания;

2. с потерей сознания, но с сохранением дыхания и работы сердца;

3. потеря сознания и нарушение сердечной деятельности или дыхания (или того и другого вместе);

4. клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Клиническая смерть - это переходный период между жизнью и смертью, начинается с момента остановки деятельности сердца и легких. Человек, находящийся в состоянии клинической смерти, не проявляет никаких признаков жизни: у нее отсутствуют дыхание, сердцебиение, реакции на болевые ощущения; зрачки глаз расширены и не реагируют на свет. Однако следует помнить, что в этом случае организм еще можно оживить, если правильно и своевременно подать ему помощь. Продолжительность клинической смерти может составлять 5-8 мин. Если помощь не будет подана своевременно, то наступает биологическая (истинная) смерть.

Результат поражения человека электрическим током зависит от многих факторов. Важнейшими из них являются величина и продолжительность действия тока, род и частота тока и индивидуальные свойства организм


Определение сопротивления растекания тока одиночных заземлителей и порядок расчета защитного контура заземления для стационарного технологического оборудования (ГОСТ 12.1.030-81. CCБТ. Защитное заземление, зануление)

Выполнение заземляющих устройств. Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – сторонние проводящие части, находящиеся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемые для целей заземления.

Для искусственных заземлителей применяют обычно вертикальные и горизонтальные электроды.

В качестве естественных заземлителей могут использоваться: проложенные в земле водопроводные и другие металлические трубы (за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов); обсадные трубы артезианских колодцев, скважин, шурфов и т. п.; металлические и железобетонные конструкции зданий и сооружений, имеющие соединения с землей; свинцовые оболочки кабелей, проложенных в земле; металлические шпунты гидротехнических сооружений и т. п.

Расчет защитного заземления имеет целью определить основные параметры заземления – число, размеры и порядок размещения одиночных заземлителей и заземляющих проводников, при которых напряжения прикосновения и шага в период замыкания фазы на заземленный корпус не превышают допустимых значений.

Для расчета заземления необходимы следующие сведения:

1) характеристика электроустановки - тип установки, виды основного оборудования, рабочие напряжения, способы заземления нейтралей трансформаторов и генераторов и т. п.;

2) план электроустановки с указанием основных размеров и размещения оборудования;

3) формы и размеры электродов, из которых предусмотрено соорудить проектируемый групповой заземлитель, а также предполагаемая глубина погружения их в землю;

4) данные измерений удельного сопротивления грунта на участке, где должен быть сооружен заземлитель, и сведения о погодных (климатических) условиях, при которых производились эти измерения, а также характеристика климатической зоны. Если земля принимается двухслойной, то необходимо иметь данные измерений удельного сопротивления обоих слоев земли и толщина верхнего слоя;

5) данные о естественных заземлителях: какие сооружения могут быть использованы для этой цели и сопротивления их растеканию тока, полученные непосредственным измерением. Если по каким-либо причинам измерить сопротивление естественного заземлителя невозможно, то должны быть представлены сведения, позволяющие определить это сопротивление расчетным путем;

6) расчетный ток замыкания на землю. Если ток неизвестен, то его вычисляют обычными способами;

7) расчетные значения допустимых напряжений прикосновения (и шага) и время действия защиты, в случае если расчет производится по напряжениям прикосновения (и шага).

Расчет заземления производится обычно для случаев размещения заземлителя в однородной земле. В последние годы разработаны и начали применяться инженерные способы расчета заземлителей в многослойном грунте.

При расчете заземлителей в однородной земле учитывается, сопротивление верхнего слоя земли (слоя сезонных изменений), обусловленное промерзанием или высыханием грунта. Расчет производят способом, основанным на применении коэффициентов использования проводимости заземлителя и называемым поэтому способом коэффициентов использования. Его выполняют как при простых, так и при сложных конструкциях групповых заземлителей.

При расчете заземлителей в многослойной земле обычно принимают двухслойную модель земли с удельными сопротивлениями верхнего и нижнего слоев r1, и r2 соответственно и толщиной (мощностью) верхнего слоя h1. Расчет производится способом, основанным на учете потенциалов, наведенных на электроды, входящие в состав группового заземлителя, и называемым поэтому способом наведенных потенциалов. Расчет заземлителей в многослойной земле более трудоемкий. Вместе с тем он дает более точные результаты. Его целесообразно применять при сложных конструкциях групповых заземлителей, которые обычно имеют место в электроустановках с эффективно заземленной нейтралью, т. е. в установках напряжением 110 кВ и выше.

При расчете заземляющего устройства любым способом необходимо определить для него требуемое сопротивление.

Определение требуемого сопротивления заземляющего устройства производят в соответствии с ПУЭ.

Для установок напряжением до 1 кВ сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей в системе типа IT должно соответствовать условию:

где Rз - сопротивление заземляющего устройства, ом; Uпр.доп – напряжение прикосновения, значение которого принимается равным 50 в; Iз – полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность трансформаторов и генераторов, питающих сеть, не превышает 100 кВА, в том числе суммарная мощность трансформаторов и (или) генераторов, работающих параллельно.

Для установок напряжением выше 1 кВ выше 1 кВ сопротивление заземляющего устройства должно соответствовать:

0,5 Ом при эффективно заземленной нейтрали (т. е. при больших токах замыкания на землю);

250/Iз, но не более 10 Ом при изолированной нейтрали (т. е. при малых токах замыкания на землю) и условии, что заземлитель используется только для электроустановок напряжением выше 1000 В.

В этих выражениях Iз - расчетный ток замыкания на землю.

В процессе эксплуатации может произойти повышение сопротивления растеканию тока заземлителя сверх расчетного значения, поэтому необходимо периодически контролировать значение сопротивления заземлителя.

Контур заземления

Контур заземления классически представляет собой группу соединенных горизонтальным проводником вертикальных электродов небольшой глубины, смонтированных около объекта на относительно небольшом взаимном расстоянии друг от друга.

В качестве заземляющих электродов в таком заземляющем устройстве традиционно использовали стальной уголок либо арматура длинами 3 метра, которые забивали в грунт с помощью кувалды.

В качестве соединительного проводника использовали стальную полосу 4х40 мм, которая укладывалась в заранее подготовленную канаву глубиной 0,5 - 0,7 метра. Проводник присоединялся к смонтированным заземлителям электро- или газосваркой.

Контур заземления для экономии места обычно «сворачивают» вокруг здания вдоль стен (по периметру). Если взглянуть на этот заземлитель сверху, можно сказать, что электроды смонтированы по контуру здания (отсюда и название).

Таким образом контур заземления - это заземлитель, состоящий из нескольких электродов (группы электродов), соединенных друг с другом и смонтированных вокруг здания по его контуру.