Какой вид команды имеет на языке ассемблера. Программирование: язык Ассемблера

Какой вид команды имеет на языке ассемблера. Программирование: язык Ассемблера
Какой вид команды имеет на языке ассемблера. Программирование: язык Ассемблера

По назначению можно выделить команды (в скобках приводятся примеры мнемонических кодов операций команд ассемблера ПК типа IBM PC):

l выполнения арифметических операций (ADD и ADC - сложения и сложения с переносом, SUB и SBB - вычитания и вычитания с заемом, MUL и IMUL - умножения без знака и со знаком, DIV и IDIV - деления без знака и со знаком, CMP - сравнения и т. д.);

l выполнения логических операций (OR, AND, NOT, XOR, TEST и т. д.);

l пересылки данных (MOV - переслать, XCHG - обменять, IN - ввести в микропроцессор, OUT - вывести из микропроцессора и т. д.);

l передачи управления (ветвления программы: JMP - безусловного перехода, CALL - вызова процедуры, RET - возврата из процедуры, J* - условного перехода, LOOP - управления циклом и т. д.);

l обработки строк символов (MOVS - пересылки, CMPS - сравнения, LODS - загрузки, SCAS - сканирования. Эти команды обычно используются с префиксом (модификатором повторения) REP;

l прерывания работы программы (INT - программные прерывания, INTO - условного прерывания при переполнении, IRET - возврата из прерывания);

l управления микропроцессором (ST* и CL* - установки и сброса флагов, HLT - останова, WAIT - ожидания, NOP - холостого хода и т. д.).

С полным списком команд ассемблера можно познакомиться в работах .

Команды пересылки данных

l MOV dst, src - пересылка данных (move - переслать из src в dst).

Пересылает: один байт (если src и dst имеют формат байта) или одно слово (если src и dst имеют формат слова) между регистрами или между регистром и памятью, а также заносит непосредственное значение в регистр или в память.

Операнды dst и src должны иметь одинаковый формат - байт или слово.

Src могут иметь тип: r (register) - регистр, m (memory) - память, i (impedance) - непосредственное значение. Dst могут быть типа r, m. Нельзя в одной команде использовать операнды: rsegm совместно с i; два операнда типа m и два операнда типа rsegm). Операнд i может быть и простым выражением:

mov AX, (152 + 101B) / 15

Вычисление выражения выполняется только при трансляции. Флаги не меняет.

l PUSH src - занесение слова в стек (push- протолкнуть; записать в стек изsrc). Помещает в вершину стека содержимое src - любого 16-битового регистра (в том числе и сегментного) или двух ячеек памяти, содержащих 16-битовое слово. Флаги не меняются;

l POP dst - извлечение слова из стека (pop - вытолкнуть; считать из стека в dst). Снимает слово с вершины стека и помещает его в dst - любой 16-битовый регистр (в том числе и сегментный) или в две ячейки памяти. Флаги не меняются.

Курсоваяработа

По дисциплине «Системное программирование»

Тема №4: «Решение задач на процедуры»

Вариант 2

ВОСТОЧНО-СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ

____________________________________________________________________

ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

ЗАДАНИЕ

на курсовую работу

Дисциплина:
Тема: Решение задач на процедуры
Исполнитель(и):Главинская Арина Александровна
Руководитель:ДамбаеваСэсэгма Викторовна
Краткое содержание работы:изучение подпрограмм на языке Ассемблера,
решение задач с использованием подпрограмм
1. Теоретическая часть:Основные сведения о языке Ассемблер (набор
команд и т.д.), Организация подпрограмм, Способы передачи впараметров
в подпрограммах
2. Практическая часть:Разработать две подпрограммы, одна из которых преобразует любую заданную букву в заглавную (в том числе для русских букв), а другая преобразует букву в строчную.
преобразует любую заданную букву в заглавную, а другая преобразует букву в строчную.
преобразует букву в строчную.
Сроки выполнения проекта по графику:
1. Теоретическая часть - 30 % к 7 неделе.
2. Практическая часть - 70 % к 11 неделе.
3. Защита - 100% к 14 неделе.
Требования к оформлению:
1. Расчетно-пояснительная записка курсового проекта должна быть представлена в
электронной и твердой копиях.
2. Объем отчета должен быть не менее 20 машинописных страниц без учета приложений.
3. РПЗ оформляется по ГОСТу 7.32-91 и подписывается у руководителя.

Руководитель работы __________________

Исполнитель __________________

Дата выдачи "26 " сентября 2017 г.


Введение. 2

1.1 Основные сведения о языке Ассемблер. 3

1.1.1 Набор команд. 4

1.2 Организация подпрограмм в языке Ассемблер. 4

1.3 Способы передачи параметров в подпрограммах. 6

1.3.1 Передача параметров через регистры.. 6

1.3.2 Передача параметров через стек. 7

2 ПРАКТИЧЕСКИЙ РАЗДЕЛ.. 9

2.1 Постановка задачи. 9

2.2 Описание решения задачи. 9

2.3 Тестирование программы.. 7

Заключение. 8

Список литературы.. 9


Введение

Общеизвестно, что программировать на Ассемблере трудно. Как Вы знаете, сейчас существует много различных языков высокого уровня , которые позволяют затрачивать намного меньше усилий при написании программ. Естественно, возникает вопрос, когда у программиста может появиться необходимость использовать Ассемблер при написании программ. В настоящее время можно указать две области, в которых использование языка Ассемблера оправдано, а зачастую и необходимо.

Во-первых, это так называемые машинно-зависимые системные программы, обычно они управляют различными устройствами компьютера (такие программы называются драйверами). В этих системных программах используются специальные машинные команды, которые нет необходимости применять в обычных (или, как говорят прикладных ) программах. Эти команды невозможно или весьма затруднительно задать в языке высокого уровня.

Вторая область применения Ассемблера связана с оптимизацией выполнения программ. Очень часто программы-переводчики (компиляторы) с языков высокого уровня дают весьма неэффективную программу на машинном языке. Обычно это касается программ вычислительного характера, в которых большую часть времени выполняется очень небольшой (порядка 3-5%) участок программы (главный цикл). Для решения этой проблемы могут использоваться так называемые многоязыковые системы программирования, которые позволяют записывать части программы на различных языках. Обычно основная часть программы записывается на языке программирования высокого уровня (Фортране, Паскале, С и т.д.), а критические по времени выполнения участки программы – на Ассемблере. Скорость работы всей программы при этом может значительно увеличиться. Часто это единственный способ заставить программу дать результат за приемлемое время.

Целью данной курсовой работы является получение практических навыков работы программирования на языке ассемблера.

Задачи работы:

1. Изучить основные сведения о языке Ассемблер (структура и компоненты программы на Ассемблере, формат команд, организация подпрограмм и др.);

2. Изучить виды битовых операций, формат и логику работы логических команд Ассемблера;

3. Решить индивидуальную задачу на применение подпрограмм в Ассемблере;

4.. Сформулировать вывод о проделанной работе.

1 ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

Основные сведения о языке Ассемблер

Assembler - язык программирования низкого уровня, представляющий собой формат записи машинных команд, удобный для восприятия человеком.

Команды языка ассемблера один в один соответствуют командам процессора и, фактически, представляют собой удобную символьную форму записи (мнемокод) команд и их аргументов. Также язык ассемблера обеспечивает базовые программные абстракции: связывание частей программы и данных через метки с символьными именами и директивы.

Директивы ассемблера позволяют включать в программу блоки данных (описанные явно или считанные из файла); повторить определённый фрагмент указанное число раз; компилировать фрагмент по условию; задавать адрес исполнения фрагмента, менять значения меток в процессе компиляции; использовать макроопределения с параметрами и др.

Достоинства и недостатки

· минимальное количество избыточного кода (использование меньшего количества команд и обращений в память). Как следствие - большая скорость и меньший размер программы;

· большие объемы кода, большое число дополнительных мелких задач;

· плохая читабельность кода, трудность поддержки (отладка, добавление возможностей);

· трудность реализации парадигм программирования и любых других сколько-нибудь сложных конвенций, сложность совместной разработки;

· меньшее количество доступных библиотек, их малая совместимость;

· непосредственный доступ к аппаратуре: портам ввода-вывода, особым регистрам процессора;

· максимальная «подгонка» для нужной платформы (использование специальных инструкций, технических особенностей «железа»);

· непереносимость на другие платформы (кроме двоично совместимых).

Кроме инструкций, программа может содержать директивы: команды, не переводящиеся непосредственно в машинные инструкции, а управляющие работой компилятора. Набор и синтаксис их значительно разнятся и зависят не от аппаратной платформы, а от используемого компилятора (порождая диалекты языков в пределах одного семейства архитектур). В качестве набора директив можно выделить:

· определение данных (констант и переменных);

· управление организацией программы в памяти и параметрами выходного файла;

· задание режима работы компилятора;

· всевозможные абстракции (т.е. элементы языков высокого уровня) - от оформления процедур и функций (для упрощения реализации парадигмы процедурного программирования) до условных конструкций и циклов (для парадигмы структурного программирования);

· макросы.

Набор команд

Типичными командами языка ассемблера являются:

· Команды пересылки данных (mov и др.)

· Арифметические команды (add, sub, imul и др.)

· Логические и побитовые операции (or, and, xor, shr и др.)

· Команды управления ходом выполнения программы (jmp, loop, ret и др.)

· Команды вызова прерываний (иногда относят к командам управления): int

· Команды ввода-вывода в порты (in, out)

Для микроконтроллеров и микрокомпьютеров характерны также команды, выполняющие проверку и переход по условию, например:

· jne - перейти, если не равно;

· jge - перейти, если больше или равнo .

Для того чтобы машина могла выполнить команды человека на аппаратном уровне, необходимо задать определенную последовательность действий на языке «ноликов и единиц». Помощником в этом деле станет Ассемблер. Это утилита, которая работает с переводом команд на машинный язык. Однако написание программы - весьма трудоемкий и сложный процесс. Данный язык не предназначен для создания легких и простых действий. На данный момент любой используемый язык программирования (Ассемблер работает прекрасно) позволяет написать специальные эффективные задачи, которые сильно влияют на работу аппаратной части. Основным предназначением является создание микрокоманд и небольших кодов. Данный язык дает больше возможностей, чем, например, Паскаль или С.

Краткое описание языков Ассемблера

Все языки программирования разделяются по уровням: низкий и высокий. Любой из синтаксической системы «семейки» Ассемблера отличается тем, что объединяет сразу некоторые достоинства наиболее распространенных и современных языков. С другими их роднит и то, что в полной мере можно использовать систему компьютера.

Отличительной особенностью компилятора является простота в использовании. Этим он отличается от тех, которые работают лишь с высокими уровнями. Если взять во внимание любой такой язык программирования, Ассемблер функционирует вдвое быстрее и лучше. Для того чтобы написать в нем легкую программу, не понадобится слишком много времени.

Кратко о структуре языка

Если говорить в общем о работе и структуре функционирования языка, можно точно сказать, что его команды полностью соответствуют командам процессора. То есть Ассемблер использует мнемокоды, наиболее удобные человеку для записи.

В отличие от других языков программирования, Ассемблер использует вместо адресов для записи ячеек памяти определенные метки. Они с процессом выполнения кода переводятся в так называемые директивы. Это относительные адреса, которые не влияют на работу процессора (не переводятся в машинный язык), а необходимы для распознавания самой средой программирования.

Для каждой линейки процессора существует своя При таком раскладе правильным будет любой процесс, в том числе и переведенный

Язык Ассемблера имеет несколько синтаксисов, которые будут рассмотрены в статье.

Плюсы языка

Наиболее важным и удобным приспособлением языка Ассемблера станет то, что на нем можно написать любую программу для процессора, которая будет весьма компактной. Если код оказывается огромным, то некоторые процессы перенаправляет в оперативную память. При этом они все выполняют достаточно быстро и без сбоев, если конечно, ими управляет квалифицированный программист.

Драйвера, операционные системы, BIOS, компиляторы, интерпретаторы и т. д. - это все программа на языке Ассемблера.

При использовании дизассемблера, который совершает перевод из машинного в можно запросто понять, как работает та или иная системная задача, даже если к ней нет пояснений. Однако такое возможно лишь в том случае, если программы легкие. К сожалению, в нетривиальных кодах разобраться достаточно сложно.

Минусы языка

К сожалению, начинающим программистам (и зачастую профессионалам) трудно разобрать язык. Ассемблер требует подробного описания необходимой команды. Из-за того, что нужно использовать машинные команды, растет вероятность ошибочных действий и сложность выполнения.

Для того чтобы написать даже самую простую программу, программист должен быть квалифицированным, а его уровень знаний достаточно высоким. Средний специалист, к сожалению, зачастую пишет плохие коды.

Если платформа, для которой создается программа, обновляется, то все команды необходимо переписывать вручную - этого требует сам язык. Ассемблер не поддерживает функцию автоматического регулирования работоспособности процессов и замену каких-либо элементов.

Команды языка

Как уже было сказано выше, для каждого процессора имеется свой набор команд. Простейшими элементами, которые распознаются любыми типами, являются следующие коды:


Использование директив

Программирование микроконтроллеров на языке (Ассемблер это позволяет и прекрасно справляется с функционированием) самого низкого уровня в большинстве случаев заканчивается удачно. Лучше всего использовать процессоры с ограниченным ресурсом. Для 32-разрядной техники данный язык подходит отлично. Часто в кодах можно заметить директивы. Что же это? И для чего используется?

Для начала необходимо сделать акцент на том, что директивы не переводятся в машинный язык. Они регулируют выполнение работы компилятором. В отличие от команд, эти параметры, имея различные функции, отличаются не благодаря разным процессорам, а за счет другого транслятора. Среди основных директив можно выделить следующие:


Происхождение названия

Благодаря чему получил название язык - "Ассемблер"? Речь идет о трансляторе и компиляторе, которые и производят зашифровку данных. С английского Assembler означает не что иное, как сборщик. Программа не была собрана вручную, была использована автоматическая структура. Более того, на данный момент уже у пользователей и специалистов стерлась разница между терминами. Часто Ассемблером называют языки программирования, хотя это всего лишь утилита.

Из-за общепринятого собирательного названия у некоторых возникает ошибочное решение, что существует единый язык низкого уровня (или же стандартные нормы для него). Чтобы программист понял, о какой структуре идет речь, необходимо уточнять, для какой платформы используется тот или иной язык Ассемблера.

Макросредства

Языки Ассемблера, которые созданы относительно недавно, имеют макросредства. Они облегчают как написание, так и выполнение программы. Благодаря их наличию, транслятор выполняет написанный код в разы быстрее. При создании условного выбора можно написать огромный блок команд, а проще воспользоваться макросредствами. Они позволят быстро переключаться между действиями, в случае выполнения условия или невыполнения.

При использовании директив макроязыка программист получает макросы Ассемблера. Иногда он может широко использоваться, а иногда его функциональные особенности снижаются до одной команды. Их наличие в коде облегчает работу с ним, делает его более понятным и наглядным. Однако следует все равно быть внимательным - в некоторых случаях макросы, наоборот, ухудшают ситуацию.

Введение.

Язык, на котором написана исходная программа, называется вход-ным языком, а язык, на который она переводится для исполнения процессо-ром, - выходным языком. Процесс преобразования входного языка в выходной язык называется трансляцией. Так как процессоры способны выполнять програм-мы на машинном языке двоичных кодов, который не используется для програм-мирования, то необходима трансляция всех исходных программ. Известны два способа трансляции: компиляция и интерпретация.

При компиляции исходная программа сначала полностью переводится в экви-валентную программу на выходном языке, называемую объектной программой, а затем выполняется. Этот процесс реализуется с помощью специальной про-граммы, называемой компилятором. Компилятор, для которого входной язык яв-ляется символической формой представления машинного (выходного) языка дво-ичных кодов, называется ассемблером.

При интерпретации каждая строка текста исходной программы анализируется (интерпретируется) и указанная в ней команда сразу выполняется. Реализация такого способа возлагается на программу–интерпретатор. Интерпретация занима-ет длительное время. Для повышения ее эффективности вместо обработки каждой строки интерпретатор предварительно осуществляет преобразование всех ко-мандных строк в символы (

). Сформированная последовательность симво-лов используется для выполнения возложенных на исходную программу функций.

Рассматриваемый ниже язык ассемблера реализуется с помощью компиляции.

Особенности языка.

Основные особенности ассемблера:

● вместо двоичных кодов в языке используются символьные имена - мнемо-ника. Например, для команды сложения (

) используется мнемоника

Вычитания (

умножения (

Деления (

и т. д. Символьные имена используются и для адресации ячеек памяти. Для программирования на языке ассемблера вместо двоичных кодов и адре-сов нужно знать только символические названия, которые ассемблер транс-лирует в двоичные коды;

каждое высказывание соответствует одной машинной команде (коду), т. е. су-ществует взаимно однозначное соответствие между машинными командами и операторами в программе на языке ассемблера;

● язык обеспечивает доступ ко всем объектам и командам. Языки высокого уровня такой способностью не обладают. Например, язык ассемблера позво-ляет выполнить проверку бита регистра флагов, а язык высокого уровня (на-пример,

) такой способностью не обладает. Отметим, что языки для сис-темного программирования (например, С) часто занимают промежуточное положение. С точки зрения возможностей доступа они ближе к языку ассемб-лера, однако обладают синтаксисом языка высокого уровня;

● язык ассемблера не является универсальным языком. Для каждой определен-ной группы микропроцессоров имеется свой ассемблер. Языки высокого уровня лишены этого недостатка.

В отличие от языков высокого уровня написание и отладка программы на язы-ке ассемблера занимает много времени. Несмотря на это, язык ассемблера по-лучил широкое распространение в силу следующих обстоятельств:

● составленная на языке ассемблера программа имеет значительно меньшие размеры и работает гораздо быстрее, чем программа, написанная на языке высокого уровня. Для некоторых приложений эти показатели играют перво-степенную роль, например, многие системные программы (в том числе ком-пиляторы), программы в кредитных карточках, сотовых телефонах, драйверах устройств и др.;

● некоторым процедурам требуется полный доступ к аппаратному обеспече-нию, что обычно невозможно осуществить на языке высокого уровня. К этому случаю относятся прерывания и обработчики прерываний в операционных системах, а также контроллеры устройств во встроенных системах, работа-ющих в режиме реального времени.

В большинстве программ лишь небольшой процент всего кода отвечает за большой процент времени выполнения программы. Обычно 1% программы отве-чает за 50% времени выполнения, а 10% программы отвечает за 90% времени выполнения. Поэтому для написания конкретной программы в реальных ус-ловиях используется как ассемблер, так и один из языков высокого уровня.

Формат оператора в языке ассемблера.

Программа на языке ассемблера представляет собой список команд (высказываний, предложений), каждая из кото-рых занимает отдельную строку и содержит четыре поля: поле метки, поле опера-ции, поле операндов и поле комментариев. Для каждого поля отводится отдель-ная колонка.

Поле метки.

Для поля метки отводится колонка 1. Метка является символи-ческим именем, или идентификатором, адреса памяти. Она необходима для того, чтобы можно было:

● совершить условный или безусловный переход к команде;

● получить доступ к месту, где хранятся данные.

Такие высказывания снабжаются меткой. Для обозначения имени используют-ся (прописные) буквы английского алфавита и цифры. В начале имени должна стоять буква, в конце - разделитель в виде двоеточия. Метку с двоеточием мож-но писать на отдельной строке, а код операции - на следующей строке в колонке 2, что упрощает работу компилятора. Отсутствие двоеточия не поз-воляет отличить метку от кода операции, если они расположены на отдельных строках.

В некоторых версиях языка ассемблера двоеточия ставятся только после ме-ток команд, но не после меток данных, а длина метки может быть ограничена 6 или 8 символами.

В поле метки не должно встречаться одинаковых имен, так как метка ассоции-руется с адресами команд. Если в процессе выполнения программы отсутствует необходимость вызова команды или данных из памяти, то поле метки остается пустым.

Поле кода операции.

Это поле содержит мнемокод команды или псевдо-команды (см. ниже). Мнемокод команд выбирается разработчиками языка. В язы-ке ассемблера

для загрузки регистра из памяти выбрана мнемоника

), а для сохранения содержимого регистра в памяти - мнемоника

). В языках ассемблера

для обеих операций можно ис-пользовать одно имя, соответственно

Если выбор названий мнемо-ник может быть произвольным, то необходимость использования двух машинных команд обусловлено архитектурой процессоров

Мнемоника регистров также зависит от версии ассемблера (табл. 5.2.1).

Поле операнда.

Здесь располагается дополнительная информация, необ-ходимая для выполнения операции. В поле операндов для команд перехода ука-зан адрес, куда нужно совершить переход, а также заданы адреса и регистры, ко-торые являются операндами для машинной команды. В качестве примера приве-дем операнды, которые могут быть использованы для 8–разрядных процессоров

● числовые данные,

представленные в различных системах счисления. Для обозначения используемой системы счисления за константой следует одна из латинских букв: В,

Соответственно двоичная, восьмеричная, шестнадцатеричная, десятичная системы счисления (

можно не записывать). Если первой цифрой шестнадцатеричного числа являются А, В, С,

То впереди добавляется незначащий 0 (нуль);

● коды внутренних регистров микропроцессора и ячейки памяти

М (источников или приемников информации) в виде букв А, В, С,

М или их адреса в любой системе счисления (например, 10В - адрес регистра

в двоичной системе);

● идентификаторы,

для регистровых пар ВС,

Первые буквы В,

Н; для пары аккумулятора и регистра признаков -

; для счетчика команд -

;для указателя стека -

● метки, указывающие адреса операндов или следующих команд в условных

(при выполнении условия) и безусловных переходах. Например, операнд М1 в команде

означает необходимость безусловного перехода к коман-де, адрес которой в поле метки отмечен идентификатором М1;

● выражения,

которые строятся путем связывания рассмотренных выше данных с помощью арифметических и логических операторов. Отметим, что способ резервирования пространства для данных зависит от версии языка. Разработчики языка ассемблера для

Определить слово), а позднее ввели альтернативный вариант.

который с самого начала был в языке для процессоров

В версии языка

используется

Определить константу).

Процессоры обрабатывают операнды разной длины. Для ее определения раз-работчики ассемблера приняли разные решения, например:

II регистры разной длины имеют разные названия: ЕАХ - для раз-мещения 32–битных операндов (тип

); АХ - для 16–битных (тип

и АН - для 8–битных (тип

● для процессоров

к каждому коду операции прибавляются суффиксы: суффикс

Для типа

; суффикс «.В» для типа

для операндов разной длины используются разные коды операций, например, для загрузки байта, полуслова (

) и слова в 64–битный ре-гистр используются коды операций

соответственно.

Поле комментариев.

В этом поле приводятся пояснения о действиях про-граммы. Комментарии не влияют на работу программы и предназначены человеку. Они могут понадобиться для модификации программы, которая без таких ком-ментариев может быть совершенно непонятна даже опытным программистам. Комментарий начинается с символа и используется для пояснения и документи-рования программ. Начальным символом комментария могут служить:

● точка с запятой (;) в языках для процессоров фирмы

восклицательный знак (!) в языках для

Каждая отдельная строка, отведенная под комментарий, предваряется начальным символом.

Псевдокоманды (директивы).

В языке ассемблера можно выделить два ос-новных вида команд:

базовые команды, являющиеся эквивалентом машинного кода процессора. Эти команды выполняют всю предусмотренную программой обработку;

псевдокоманды, или директивы, предназначенные для обслуживания процес-са трансляции программы на язык кодовых комбинаций. В качестве примера в табл. 5.2.2 приведены некоторые псевдокоманды из ас-семблера

для семейства

.

При программировании встречаются ситуации, когда согласно ал-горитму одну и ту же цепочку команд необходимо многократно повторить. Для выхода из этой ситуации можно:

● писать нужную последовательность команд всякий раз, когда она встречается. Такой подход приводит к увеличению объема программы;

● оформить эту последовательность в процедуру (подпрограмму) и вызывать ее при необходимости. Такой выход имеет свои недостатки: каждый раз при-дется выполнять специальную команду вызова процедуры и команду возврата, что при короткой и часто используемой последовательности может сильно снизить скорость работы программы.

Наиболее простой и эффективный способ многократного повторения цепочки команд состоит в использовании макроса, который можно представить как псевдо-команду, предназначенную для повторной трансляции часто встречающейся в про-грамме группы команд.

Макрос, или макрокоманда, характеризуется тремя аспектами: макроопреде-лением, макрообращением и макрорасширением.

Макроопределение

Это обозначение многократно повторяемой последова-тельности команд программы, используемое для ссылок в тексте программы.

Макроопределение имеет следующую структуру:

Список выражений; Макроопределение

В приведенной структуре макроопределения можно выделить три части:

● заголовок

макроса, включающий в себя имя

Псевдокоманду

и набор параметров;

● отмеченное точками тело макроса;

● команда

окончания

макроопределения.

Набор параметров макроопределения содержит перечень всех параметров, приведенных в поле операнда для выбранной группы команд. Если эти парамет-ры приведены в программе ранее, то их в заголовке макроопределения можно не указывать.

Для повторного ассемблирования выбранной группы команд используется об-ращение, состоящее из имени

макрокоманды и перечня параметров с дру-гими значениями.

Когда в процессе компиляции ассемблер встречает макроопределение, он со-храняет его в таблице макроопределений. При последующих появлениях в про-грамме имени (

) макроса ассемблер замещает его телом макроса.

Использование имени макроса в качестве кода операции называется макро–обращением (макровызовом), а его замещение телом макроса - макрорасши-рением.

Если программу представить как последовательность символов (букв, цифр, пробелов, знаков пунктуации и возврата каретки для перехода на новую строку), то макрорасширение состоит в замене одних цепочек из этой последовательно-сти другими цепочками.

Макрорасширение происходит во время процесса ассемблирования, а не во время выполнения программы. Способы манипулирования цепочками символов возлагается на макросредства.

Процесс ассемблирования осуществляется в два прохода:

● на первом проходе сохраняются все макроопределения, а макровызовы расширяются. При этом исходная программа считывается и преобразуется в программу, в которой удалены все макроопределения, а каждый макро-вызов замещен телом макроса;

● на втором проходе обрабатывается полученная программа без макросов.

Макросы с параметрами.

Для работы с повторяющимися последовательно-стями команд, параметры которых могут принимать различные значения, преду-смотрены макроопределения:

● с фактическими параметрами, которые помещаются в поле операндов макро-обращения;

● с формальными параметрами. В процессе расширения макроса каждый фор-мальный параметр, появляющийся в теле макроса, замещается соответству-ющим фактическим параметром.

использования макросов с параметрами.

В программе 1 приведено две похожих последовательности команд, отличающихся тем, что пер-вая из них меняет местами Р и

А вторая

В программе 2 включен макрос с двумя формальными параметрами Р1 и Р2. Во время расшире-ния макроса каждый символ Р1 внутри тела макроса замещается первым фактическим параметром (Р,

), а символ Р2 замещается вторым фактическим параметром (

) из программы № 1. В макровызо-ве

программы 2 обозначено: Р,

Первый фактический параметр,

Второй фактический параметр.

Программа 1

Программа 2

MOV EBX,Q MOV EAX,Pl

MOV Q,EAX MOV EBX,P2

MOV P,EBX MOV P2,EAX

Расширенные возможности.

Рассмотрим некоторые расширенные возмож-ности языка

Если макрос, содержащий команду условного перехода и метку, к которой со-вершается переход, вызывается два и более раз, то метка будет дублироваться (проблема дублирование меток), что вызовет ошибку. Поэтому при каждом вызове в качестве параметра приписывается (программистом) отдельная метка. В языке

метка объявляется локальной (

) и благодаря расширенным возмож-ностям ассемблер автоматически порождает другую метку при каждом расширении макроса.

позволяет определять макросы внутри других макросов. Такая расширенная возможность весьма полезна в сочетании с условной компоновкой программы. Рассмотрим

IF WORDSIZE GT 16 M2 MACRO

Макрос М2 может быть определен в обеих частях оператора

Однако опре-деление зависит от того, на каком процессоре ассемблируется программа: на 16–битном или на 32–битном. Если М1 не вызывается, то макрос М2 вообще не будет определен.

Еще одна расширенная возможность состоит в том, что макросы могут вызы-вать другие макросы, в том числе самих себя - рекурсивный вызов. В последнем случае, чтобы не получился бесконечный цикл, макрос должен передавать само-му себе параметр, который изменяется при каждом расширении, а также про-верять этот параметр и завершать рекурсию, когда параметр достигает определенного значения.

Об использовании макросредств в ассемблере.

При использовании мак-росов ассемблер должен уметь выполнять две функции: сохранять макроопреде-ления и расширять макровызовы.

Сохранение макроопределений.

Все имена макросов хранятся в таб-лице. Каждое имя сопровождается указателем на соответствующий макрос, что-бы в случае необходимости его можно было вызвать. Одни ассемблеры имеют отдельную таблицу для имен макросов, другие - общую таблицу, в которой наря-ду с именами макросов находятся все машинные команды и директивы.

При встрече с макросом в процессе ассемблирования создается:

новый элемент таблицы с именем макроса, числом параметров и указателем на другую таблицу макроопределений, где будет храниться тело макроса;

● список формальных параметров.

Затем считывается и сохраняется в таблице макроопределений тело макроса, представляющее собой просто цепочку символов. Формальные параметры, встречающиеся в теле цикла, помечаются специальным символом.

Внутреннее представление макроса

из приведенного выше примера для программы 2 (стр. 244) имеет вид:

MOV EAX,&P1; MOV EBX,&P2; MOV &P2EAX;MOV &

где в качестве символа возврата каретки используется точка с запятой, а в каче-стве символа формального параметра - амперсант &.

Расширение макровызовов.

Всякий раз, когда при ассемблировании встречается макроопределение, оно сохраняется в таблице макросов. При вызове макроса ассемблер временно приостанавливает чтение входных данных из вход-ного устройства и начинает считывать сохраненное тело макроса. Извлеченные из тела макроса формальные параметры замещаются фактическими параметра-ми и предоставляются вызовом. Амперсант & перед параметрами позволяет ас-семблеру распознать их.

Несмотря на то, что существует много версий ассемблера, процессы ассемб-лирования имеют общие черты и во многом сходны. Ниже рассматривается рабо-та двухпроходного ассемблера.

Двухпроходной ассемблер.

Программа состоит из ряда операторов. Поэто-му, казалось бы, что при ассемблировании можно использовать следующую по-следовательность действий:

● транслировать его на машинный язык;

● перенести полученный машинный код в файл, а соответствующую часть лис-тинга - в другой файл;

● повторять перечисленные процедуры до тех пор, пока вся программа не бу-дет оттранслирована.

Однако такой подход не является эффективным. Примером может служить так называемая проблема опережающей ссылки. Если первым оператором является переход к оператору Р, расположенному в самом конце программы, то ассемблер не может транслировать его. Он сначала должен определить адрес оператора Р, а для этого необходимо прочитать всю программу. Каждое полное прочтение исходной программы называется проходом. Покажем, как можно решить пробле-му опережающей ссылки с использованием двух проходов:

на первом проходе следует собрать и сохранить в таблице все определения символов (в том числе меток), а на втором проходе - выполнить чтение и ас-семблирование каждого оператора. Такой способ относительно прост, однако второй проход по исходной программе требует дополнительных временных затрат на операции ввода–вывода;

● на первом проходе следует преобразовать программу в промежуточную фор-му и сохранить ее в таблице, а второй проход выполнить не по исходной про-грамме, а по таблице. Такой способ ассемблирования позволяет сэкономить время, так как на втором проходе не выполняются операции ввода–вывода.

Первый проход.

Цель первого прохода - построить таблицу символов. Как отмечалось выше, еще одной задачей первого прохода является сохранение всех макроопределений и расширение вызовов по мере их появления. Следовательно, в одном проходе происходит и определение символов, и расширение макросов. Символом может быть либо метка, либо значение, которому с помощью директи-вы приписывается определенное имя:

;Значение - размер буфера

Придавая значения символьным именам в поле метки команд, ассемблер по сути дела задает адреса, которые будет иметь каждая команда во время выпол-нения программы. Для этого ассемблер во время процесса ассемблирования со-храняет счетчик адреса команд (

) как специаль-ную переменную. В начале первого прохода значение специальной переменной устанавливается на 0 и увеличивается после каждой обработанной команды на длину этой команды. В качестве примера в табл. 5.2.3 приведен фрагмент про-граммы с указанием длины команд и значений счетчика. При первом проходе формируются таблицы символьных имен, директив и кодов операций, а при необ-ходимости литеральная таблица. Литерал - это константа, для которой ассемб-лер автоматически резервирует память. Сразу же отметим, что современные процессоры содержат команды с непосредственными адресами, поэтому их ас-семблеры не поддерживают литералы.

Таблица символьных имен

содержит один элемент для каждого имени (табл. 5.2.4). В каждом элементе таблицы символьных имен содержится само имя (или указатель на него), его численное значение и иногда некоторая дополни-тельная информация, которая может включать:

● длину поля данных, связанного с символом;

● биты перераспределения памяти (которые показывают, изменяется ли зна-чение символа, если программа загружается не в том адресе, в котором предполагал ассемблер);

● сведения о том, можно ли получить доступ к символу извне процедуры.

Символьные имена являются метками. Они могут быть заданы с помощью операторов (например,

Таблица директив.

В этой таблице приводятся все директивы, или псевдо-команды, которые встречаются при ассемблировании программы.

Таблица кодов операций.

Для каждого кода операции в таблице преду-смотрены отдельные графы: обозначение кода операции, операнд 1, операнд 2, 16–ричное значение кода операции, длина команды и тип команды (табл. 5.2.5). Коды операций делятся на группы в зависимости от числа и вида операндов. Тип команды определяет номер группы и задает процедуру, которая вызывается для обработки всех команд данной группы.

Второй проход.

Цель второго прохода - создание объектной программы и распечатка при необходимости протокола ассемблирования; вывод информации, необходимой компоновщику для связывания процедур, которые ассемблирова-лись в разное время, в один выполняемый файл.

При втором проходе (как и при первом) строки, содержащие операторы, считываются и обрабатываются одна за другой. Исходный оператор и полученный из него в шестнадцатеричной системе выходной объектный код можно напечатать или поместить в буфер для последующей распечатки. После переустановки счет-чика адреса команды вызывается следующий оператор.

Исходная программа может содержать ошибки, например:

приведенный символ не определен или определен более одного раза;

● код операции представлен недопустимым именем (из–за опечатки), не снабжен достаточным количеством операндов или имеет слишком много операндов;

● отсутствует оператор

Некоторые ассемблеры могут выявить неопределенный символ и заменить его. Однако в большинстве случаев при обнаружении оператора с ошибкой ассемблер выводит сообщение об ошибке на экран и пытается продолжить процесс ассемб-лирования.

Статьи посвященной языку ассемблер.

Общие сведения о языке ассемблера

Символический язык ассемблера позволяет в значительной степени устранить недостатки программирования на машинном языке.

Главным его достоинством является то, что на языке ассемблера все элементы программы представлены в символической форме. Преобразование символических имен команд в их двоичные коды возлагаются на специальную программу - ассемблер, которая освобождает программиста от трудоемкой работы и исключает неизбежные при этом ошибки.

Символические имена, вводимые при программировании на языке ассемблера, как правило отражают семантику программы, а аббревиатура команд - их основную функцию. Например: PARAM - параметр, TABLE - таблица, MASK - маска, ADD - сложение, SUB - вычитание и т.д. п. Такие имена легко запоминаются программистом.

Для программирования на языке ассемблера необходимо иметь сложные инструментальные средства, чем при программировании на машинном языке: нужны вычислительные комплексы на базе микро - ЭВМ или ПЭВМ с комплектом периферийных устройств (алфавитно-цифровая клавиатура, символьный дисплей, НГМД и печатающее устройство), а также резидентные или кросс-системы программирования для необходимых типов микропроцессоров. Язык ассемблера позволяет эффективно писать и отлаживать значительно более сложные программы, чем машинный язык (до 1 - 4 Кбайт).

Языки ассемблера являются машинно-ориентированными, т. е. зависимыми от машинного языка и структуры соответствующего микропроцессора, так как в них каждой команде микропроцессора присваивается определенное символическое имя.

Языки ассемблера обеспечивают существенное повышение производительности труда программистов по сравнению с машинными языками и в то же время сохраняют возможность использовать все программно-доступные аппаратные ресурсы микропроцессора. Это дает возможность квалифицированным программистам составлять программы, выполняемые за более короткое время и занимающие меньший объем памяти по сравнению с программами, создаваемыми на языке высокого уровня.

В связи с этим практически все программы управления устройствами ввода/вывода (драйверы) пишутся на языке ассемблера не смотря на наличие достаточно большой номенклатуры языков высокого уровня.

С помощью языка ассемблера программист может задать следующие параметры:

мнемонику (символическое имя) каждой команды машинного языка микропроцессора;

стандартный формат для строк программы, описываемой на ассемблере;

формат для указания различных способов адресации и вариантов команд;

формат для указания символьных констант и констант целочисленного типа в различных системах счисления;

псевдокоманды, управляющие процессом ассемблирования (трансляции) программы.

На языке ассемблера программа записывается построчно, т. е. для каждой команды отводится одна строка.

Для микро - ЭВМ, построенных на базе наиболее распространенных типов микропроцессоров, может существовать несколько вариантов языка ассемблера, однако практическое распространение обычно имеет один - это так называемый стандартный язык ассемблера

Программирование на уровне машинных команд - это тот минимальный уровень, на котором возможно составление программ. Система машинных команд должна быть достаточной для того, чтобы реализовать требуемые действия, выдавая указания аппаратуре вычислительной машины.

Каждая машинная команда состоит из двух частей:

· операционной - определяющей, "что делать";

· операндной - определяющей объекты обработки, "с чем делать".

Машинная команда микропроцессора, записанная на языке ассемблера, представляет собой одну строку, имеющую следующий синтакический вид:

метка команда/директива операнд(ы) ;комментарии

При этом обязательным полем в строке является команда или директива.

Метка, команда/директива и операнды (если имеются) разделяются по крайней мере одним символом пробела или табуляции.

Если команду или директиву необходимо продолжить на следующей строке, то используется символ обратный слеш: \.

По умолчанию язык ассемблера не различает заглавные и строчные буквы в написании команд или директив.

Прямая адресация : эффективный адрес определяется непосредственно полем смещения машинной команды, которое может иметь размер 8, 16 или 32 бита.

mov eax, sum ; eax = sum

Ассемблер заменяет sum на соответствующий адрес, хранящийся в сегменте данных (по умолчанию адресуется регистром ds) и значение, хранящееся по адресу sum, помещает в регистр eax.

Косвенная адресация в свою очередь имеет следующие виды:

· косвенная базовая (регистровая) адресация;

· косвенная базовая (регистровая) адресация со смещением;

· косвенная индексная адресация;

· косвенная базовая индексная адресация.

Косвенная базовая (регистровая) адресация. При такой адресации эффективный адрес операнда может находиться в любом из регистров общего назначения, кроме sp/esp и bp/ebp (это специфические регистры для работы с сегментом стека). Синтаксически в команде этот режим адресации выражается заключением имени регистра в квадратные скобки .

mov eax, ; eax = *esi; *esi значение по адресу esi