Какие системы глобальной спутниковой навигации существуют. Спутниковая система навигации

Какие системы глобальной спутниковой навигации существуют. Спутниковая система навигации
Какие системы глобальной спутниковой навигации существуют. Спутниковая система навигации

Создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли, американские учёные во главе с Ричардом Кершнером, наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если Вы точно знаете свои координаты на Земле, то становится возможным измерить положение спутника, инаоборот, точно зная положение спутника, можно определить собственные координаты.

Реализована эта идея была через 20 лет. Первый тестовый спутник выведен на орбиту 14 июля 1974 г. США, а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом Глобальная система позиционирования или сокращённо GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле. Также с помощью системы вмонтированной в спутники стало реально определять мощные ядерные заряды, находящиеся на поверхности планеты.

Первоначально GPS – глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983 г. был сбит вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту, президент США Рональд Рейган разрешил частичное использование системы навигации для гражданских целей. Ноточность была уменьшена специальным алгоритмом.

Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности и с успехом компенсируют эту составляющую ошибки, и в 2000 г. это загрубление точности было отменено указом президента США.

1. Спутниковая система навигации

Спутниковая система навигации – комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты), а также параметров движения (скороти и направлення движения и т.д.) для наземных, водных и воздушных объектов.

1.1 Что такое GPS?

Спутниковая навигационная система GPS была изначально разработана США для использования в военных целях. Другое известное название системы – «NAVSTAR». Ставшее уже нарицательным название «GPS» является сокращением от Global Positioning System, которое переводится, как Глобальная Навигационная Система. Это название полностью характеризуется предназначение системы – обеспечение навигации на всей территории Земного шара. Не только на суше, но и на море и в воздухе. Используя навигационные сигналы системы GPS, любой пользователь может определить свое текущее местоположение с высокой точностью.

Такая точность, во многом, стала возможной благодаря шагам Американского правительства, которое в 2000 году сделало систему GPS доступной и открытой для гражданских пользователей. Напомним, что ранее с помощью специального режима избирательного доступа (SA – Selective Availability) в передаваемый сигнал вносились искажения, снижающие точность позиционирования до 70–100 метров. С 1 мая 2000 года, этот режим был отключен и точность повысилась до 3–10 метров.

Фактически, это событие дало мощный импульс для развития бытовой навигационной GPS аппаратуры, снижению ее стоимости, и активной ее популяризации среди обычных пользователей. На текущий момент, GPS приемники разных типов активно применяются во всех областях человеческой деятельности, начиная от обычной навигации, заканчивая персональным контролем и увлекательными играми, типа «Geocaching ». По результатам многих исследований, использование навигационных GPS систем дает большой экономический эффект для мировой экономики и экологии – повышается безопасность движения, улучшается дорожная ситуация, уменьшается расход топлива, снижается количество вредных выбросов в атмосферу.

Растущая зависимость европейской экономики от системы GPS, и, как следствие, от администрации США, вынудила Европу начать разработку собственной навигационной системы – Galilleo. Новая система во многом похожа на систему GPS.

2. Состав системы GPS

2.1 Космический сегмент

Космический сегмент системы GPS состоит из орбитальной группировки спутников, излучающих навигационные сигналы. Спутники расположены на 6-и орбитах на высоте около 20000 км. Период обращения спутников составляет 12 часов и скорость около 3 км/c. Таким образом, за сутки, каждый спутник совершает два полных оборота вокруг Земли.

Первый спутник был запущен в феврале 1978 года. Его размер с раскрытыми солнечными батареями равнялся 5 метрам, а вес – более 900 кг. Это был спутник первой модификации GPS-I. За последние 30 лет, на орбите сменилось несколько модификаций GPS спутников: GPS II-A, GPS II-R, GPS IIR-M. В процессе модернизации снижался вес спутников, улучшалось стабильность бортовых часов, повышалась надежность.

GPS спутники передают три навигационных сигнала на двух частотах L1 и L2. «Гражданский» сигнал C/A, передаваемый на частоте L1 (1575.42 МГц), доступен всем пользователям, и обеспечивает точность позиционирования 3–10 метров. Высокоточный «военный» P-код, передается на частотах L1 и L2 (1227.60 МГц) и его точность на порядок выше «гражданского» сигнала. Использование сигнала, передаваемого на двух разных частотах, позволяет также частично компенсировать ионосферные задержки.

В последней модификации спутников «GPS IIR-М» реализован новый «гражданский» сигнал L2C, призванный повысить точность GPS измерений.

Идентификация навигационных сигналов осуществляется по номеру, соответствующему «псевдошумовому коду», уникального для каждого спутника. В технической спецификации GPS системы изначально было заложено 32 кода. На этапе разработки системы и начальном периоде ее эксплуатации, планировалось, что количество рабочих спутников не будет превышать 24-х. Свободные коды выделялись для новых GPS спутников, находящихся на этапе ввода в эксплуатацию. И этого количества было достаточно для нормального функционирования системы. Но в настоящее время, на орбите находится уже 32 спутника, из которых 31 функционирует в рабочем режиме, передавая навигационный сигнал на Землю.

«Избыточность» спутников позволяет обеспечить пользователю вычисление позиции в условиях, где «видимость» неба ограничена высотными зданиями, деревьями или горами.

2.2 Наземный сегмент

Наземный сегмент системы GPS состоит из 5-и контрольных станций и главной станции управления, расположенных на военных базах США – на островах Кваджалейн и Гавайях в Тихом океане, на острове Вознесенья, на острове Диего-Гарсия в Индийском океане и в Колорадо-Спрингс, они преведены на рисунке 1 .В задачи станций мониторинга входит прием и измерение навигационных сигналов поступающих с GPS спутников, вычисление различного рода ошибок и передача этих данных на станцию управления. Совместная обработка полученных данных позволяет вычислить отклонение траекторий спутников от заданных орбит, временные сдвиги бортовых часов и ошибки в навигационных сообщениях. Мониторинг состояния GPS спутников происходит практически непрерывно. «Загрузка» навигационных данных, состоящих из прогнозируемых орбит и поправок часов для каждого из спутников, осуществляется каждые 24 часа, в момент, когда он находится в зоне доступа станции управления.

В дополнение к наземным GPS станциям существует несколько частных и государственных сетей слежения, которые выполняют измерения навигационных GPS сигналов для уточнения параметров атмосферы и траекторий движения спутников.


Рисунок 1

2.3 Аппаратура пользователей

Под аппаратурой пользователя подразумевают навигационные приемники, которые используют сигнал со спутников GPS для вычисления текущей позиции, скорости и времени. Пользовательскую аппаратуру можно разделить на «бытовую» и «профессиональную». Во многом этом разделение условное, так как иногда достаточно трудно определить, к какой категории следует отнести GPS приемник и какие критерии при этом использовать. Есть целых класс GPS навигаторов, использующихся в пеших походах, автомобильных путешествиях, на рыбалке и т.п. Есть авиационные и морские навигационные системы, которые зачастую входят в состав сложных навигационных комплексов. В последнее время широкое распространение получили GPS чипы, которые интегрируются в КПК, телефоны и другие мобильные устройства.

Поэтому в навигации бо льшее распространение получило деление GPS приемников на «кодовые» и «фазовые». В первом случае, для вычисления позиции используется информация, передаваемая в навигационных сообщениях. К этой категории относится большинство недорогих GPS навигаторов, стоимостью 100–2000 долларов.

Вторая категория навигационных GPS приемников использует не только данные, содержащиеся в навигационных сообщениях, но и фазу несущего сигнала. В большинстве случаев это дорогостоящие одно- и двухчастотные (L1 и L2) геодезические приемники, способные вычислять позицию с относительной точностью в несколько сантиметров и даже миллиметров. Такая точность достигается в RTK режиме, при совместной обработке измерений GPS приемника и данных базовой станции. Стоимость таких устройств может составлять десятки тысяч долларов.

3. Работа GPS-навигатор а

Основной принцип, лежащий в основе всей системы GPS, прост и давно используется для навигации и ориентирования: если вы точно знаете местоположение какого-либо реперного ориентира и расстояние до него, то можно начертить окружность (в 3-х мерном случае – сферу), на которой должна быть расположена точка вашего положения. На практике, если вышеуказанное расстояние, т.е. радиус, достаточно велик, то можно заменить дугу окружности отрезком прямой линии. Если провести несколько таких линий, соответствующих разным реперным ориентирам, то точка их пересечения укажет ваше местоположение. В GPS роль таких реперов играют две дюжины спутников, движущихся каждый по своей орбите на высоте ~ 17 000 км над поверхностью Земли. Скорость их движения весьма велика, однако параметры орбиты и их текущее местонахождение с высокой точностью известны бортовым компьютерам.Важной частью любого GPS-навигатора является обычный приемник, работающий на фиксированной частоте и постоянно «прослушивающий» сигналы, передаваемые этими спутниками. Каждый из спутников постоянно излучает радиосигнал, в котором содержатся данные о параметрах его орбиты, состоянии бортового оборудования и о точном времени. Изо всей этой информации данные о точном бортовом времени являются наиболее важными: GPS-приемник с помощью встроенного процессора вычисляет промежуток времени между посылкой и получением сигнала, затем умножает его на скорость распространения радиоволн и т.о. узнает расстояние между спутником и приемником.

Сегодня мы поговорим о том, что такое GPS, как работает эта система. Уделим внимание развитию данной технологии, ее функциональным особенностям. Также обсудим, какую роль в работе системы играют интерактивные карты.

История появления GPS

История появления глобальной системы позиционирования, или определения координат, началась в США еще в далеких 50-х годах при запуске первого советского спутника в космос. Бригада американских ученых, следивших за запуском, заметила, что при отдалении спутник равномерно меняет свою частоту сигнала. После глубокого анализа данных они пришли к выводу, что при помощи спутника, если говорить более подробно, то его расположения и издаваемого сигнала, можно точно определить нахождение и скорость передвижения человека на земле, как и наоборот, скорость и нахождение спутника на орбите при определении точных координат человека. К концу семидесятых годов Минобороны США запустило систему GPS в своих целях, а еще через несколько лет она стала доступна для гражданского применения. Система GPS как работает сейчас? Точно так, как и работала в то время, по тем же принципам и основам.

Сеть спутников

Более двадцати четырех спутников, находящихся на околоземной орбите, передают радиосигналы привязки. Количество спутников варьируется, но на орбите всегда находится нужное их число для обеспечения бесперебойной работы, плюс некоторые из них есть в запасе, чтобы в случае поломки первых принять их функции на себя. Так как срок службы каждого из них приблизительно около 10 лет, производится запуск новых, модернизированных версий. Вращение спутников происходит по шести орбитам вокруг Земли на высоте менее 20 тысяч км, оно образует взаимосвязанную сеть, которой управляют станции GPS. Находятся последние на тропических островах и связаны с основным координационным центром в США.

Как работает GPS-навигатор?

Благодаря этой сети можно узнать местонахождение при помощи вычисления задержки прохождения сигнала от спутников, и при помощи этой информации определить координаты. Система GPS как работает сейчас? Как и любая сеть навигации в пространстве - она совершенно бесплатна. Она с высокой эффективностью работает при любых погодных условиях и в любое время суток. Единственная покупка, которая должна у вас быть, это сам GPS-навигатор или устройство, которое поддерживает функции GPS. Собственно, принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение. Если радиус окружности велик, то замените ее прямой линией. Проведите несколько таких полос от возможного вашего расположения в сторону маркеров, точка пересечения прямых обозначит ваши координаты на карте. Вышеупомянутые спутники в таком случае как раз и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время). К слову, информация о точном времени и является наиболее нужной для получения данных о ваших координатах: происходящее вычисление отрезка времени между отдачей и приемом радиосигнала умножается на скорость самой радиоволны и путем недолговременных подсчетов рассчитывается расстояние между вашим навигационным прибором и спутником на орбите.


Сложности синхронизации

Исходя из этого принципа навигации, можно предположить, что для точного определения ваших координат могут понадобиться всего два спутника, на основе сигналов которых легко будет найти точку пересечения, и в итоге — место, где вы находитесь. Но, к сожалению, технические причины требуют применения еще одного спутника как маркера. Главная проблема заключается в часах GPS-приемника, что не позволяет провести достаточную синхронизацию со спутниками. Причиной этому является разница в отображении времени (на вашем навигаторе и в космосе). На спутниках присутствуют дорогие высококачественные часы на атомной основе, что позволяет им вести подсчет времени с предельной точностью, тогда как на обычных приемниках такие хронометры применить попросту невозможно, так как габариты, стоимость, сложность в эксплуатации не позволили бы применять их повсюду. Даже малая ошибка в 0.001 секунды может сместить координаты более чем на 200 км в сторону!


Третий маркер

Так что разработчики решили оставить обычную технологию кварцевых часов в GPS-навигаторах и пойти по другому пути, если говорить точнее - использовать вместо двух ориентиров-спутников — три, соответственно, столько же линий для последующего пересечения. Решение проблемы строится на гениально простом выходе: при пересечении всех линий с трех обозначенных маркеров, даже при возможных неточностях, создается зона в форме треугольника, за центр которого берется его середина - ваше расположение. Также это позволяет выявить отличие во времени приемника и всех трех спутников (для которых отличие будет одинаковым), что позволяет скорректировать пересечение линий ровно в центре, проще говоря — это определяет ваши координаты GPS.


Одна частота

Следует также заметить, что все спутники посылают на ваше устройство информацию на одной частоте, и это довольно необычно. Как работает GPS-навигатор и как воспринимает всю информацию корректно, если все спутники беспрерывно и одновременно посылают на него информацию? Все довольно-таки просто. Передатчики на спутнике для определения себя посылают в радиосигнале еще и стандартную информацию, в которой находится зашифрованный код. Он сообщает максимум характеристик спутника и заносится в базу данных вашего устройства, что потом позволяет сверять данные со спутника с базой данных навигатора. Даже при большом количестве спутников в зоне досягаемости очень быстро и легко их можно определить. Все это упрощает всю схему и позволяет использовать в GPS-навигаторах меньшие по размеру и более слабые антенны приема, что удешевляет и уменьшает дизайн и габариты устройств.

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности. GPS как работает в данном случае? Бесплатно, это так и продолжает оставаться в таком статусе, карты в некоторых интернет-магазинах (и не только) все же платные. Зачастую для прибора с GPS-навигатором создаются отдельные приложения для работы с картами: как платные, так и бесплатные. Разновидность карт приятно удивляет и позволяет настроить дорогу из точки A в точку Б максимально информативно и со всеми удобствами: какие достопримечательности вы будете проезжать, кратчайший путь до пункта назначения, голосовой помощник, указывающий направление и другие.


Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.


Путешествия без проблем

С каждым днем значения карты и бессменного компаса уходят все дальше в прошлое. Современные технологии позволяют человеку проложить дорогу для своего странствия с минимальными потерями времени, усилий и средств, при этом увидеть наиболее захватывающие и интересные места. То, что было фантастикой около столетия назад, сегодня стало реальностью, и воспользоваться этим может практически каждый: от военных, моряков и пилотов самолетов до туристов и курьеров. Сейчас большую популярность набирает и использование этих систем для коммерческой, развлекательной, рекламной отраслей, где каждый предприниматель может указать себя на глобальной карте мира, и его будет совсем нетрудно найти. Надеемся, что эта статья помогла всем, кто интересуется тем, GPS - как работает, по какому принципу происходит определение координат, какие его сильные и слабые стороны.

Многие автовладельцы используют навигаторы в своих автомобилях. При этом некоторые из них не знают о существовании двух различных спутниковых систем – российской ГЛОНАСС и американской GPS. Из этой статьи вы узнаете, в чем же их отличия и какой следует отдать предпочтение.

Как работает навигационная система

Навигационная система в основном используется для того, чтобы определить местоположение объекта (в данном случае автомобиля) и скорость его движения. Иногда от неё требуется и определение некоторых других параметров, например, высоты над уровнем моря.

Вычисляет она эти параметры, устанавливая расстояние между самим навигатором и каждым из нескольких спутников, расположенных на земной орбите. Как правило, для эффективной работы системы необходима синхронизация с четырьмя спутниками. По изменению этих расстояний она и определяет координаты объекта и другие характеристики движения. Спутники ГЛОНАСС не синхронизируются с вращением Земли, из-за чего обеспечивается их стабильность на большом промежутке времени.

Видео: ГлоНаСС vs GPS

Что лучше ГЛОНАСС или GPS и в чем их разница

Системы навигации в первую очередь предполагали их использование в военных целях, и только потом стали доступны для обычных граждан. Очевидно, что военным необходимо использовать разработки своего государства, потому что иностранная система навигации может быть отключена властями этой страны в случае возникновения конфликтной ситуации. Более того, в России призывают использовать систему ГЛОНАСС и в повседневной жизни военным и государственным служащим.

В повседневной жизни обычному автомобилисту и вовсе не стоит переживать по поводу выбора навигационной системы. И ГЛОНАСС, и обеспечивают качество навигации, достаточное для использования в житейских целях. На северных территориях России и других государств, расположенных в северных широтах, спутники ГЛОНАСС работают эффективнее, из-за того, что их траектории передвижения находятся выше над Землей. То есть в Заполярье, в скандинавских странах ГЛОНАСС эффективнее и это признали шведы еще в 2011 году. В других регионах GPS немного точнее ГЛОНАСС в определение местоположения. По данным Российской системы дифференциальной коррекции и мониторинга ошибки GPS составляли от 2 до 8 метров, ошибки ГЛОНАСС от 4 до 8 метров. Но GPS, чтобы определить местоположение нужно поймать от 6 до 11 спутников, ГЛОНАСС хватит 6-7 спутников.

Также следует учесть, что система GPS появилась на 8 лет раньше и ушла в солидный отрыв в 90-ые года. И за последнее десятилетие ГЛОНАСС этот отрыв сократила почти полностью, а к 2020 году разработчики обещают, что ГЛОНАСС не будет ни в чем уступать GPS.

На большинство современных устанавливается комбинированная система, которая поддерживает как российскую спутниковую систему, так и американскую. Именно такие устройства являются наиболее точными и обладают самой низкой ошибкой в определении координат автомобиля. Также возрастает и стабильность принимаемых сигналов, ведь такой аппарат может «увидеть» больше спутников. С другой стороны, цены на такие навигаторы намного выше односистемных аналогов. Оно и понятно – в них встраиваются два чипа, способные принимать сигналы от каждого типа спутников.

Видео: тест GPS и GPS+ГЛОНАСС приемников Redpower CarPad3

Таким образом, наиболее точными и надежными навигаторами являются двухсистемные устройства. Однако их преимущества связаны с одним существенным недостатком – стоимостью. Поэтому при выборе нужно подумать – а нужна ли настолько высокая точность в условиях каждодневного использования? Также для простого автолюбителя не очень важно, какой навигационной системой пользоваться – российской или американской. Ни GPS, ни ГЛОНАСС не дадут вам заблудиться и доставят к желаемому месту назначения.

В статье рассмотрен принцип работы, состав и особенности системы спутникового позиционирования GPS (англ. Global Positioning System).
Навигационная система Global Positioning System (GPS) является частью комплекса NAVSTAR, который разработан, реализован и эксплуатируется Министерством обороны США. Разработка комплекса NAVSTAR (NAVigation Satellites providing Time And Range – навигационная система определения времени и дальности) была начата ещё в 1973 году, а уже 22 февраля 1978 года был произведён первый тестовый запуск комплекса, а в марте 1978 года комплекс NAVSTAR начали эксплуатировать. Первый тестовый спутник был выведен на орбиту 14 июля 1974 года, а последний из 24 необходимых спутников для полного покрытия земной поверхности, был выведен на орбиту в 1993 году. Гражданский сегмент военной спутниковой сети NAVSTAR принято называть аббревиатурой GPS, коммерческая эксплуатация системы в сегодняшнем виде началась в 1995 году.
Спустя более 20-ти лет с момента тестового запуска системы GPS и 5-ти лет с момента начала коммерческой эксплуатации Глобальной системы позиционирования GPS, 1 мая 2000 года министерство обороны США отменило особые условия пользования системой GPS, существовавшие до тех пор. Американские военные выключили помеху (SA – selective availability), искусственно снижающую точность гражданских GPS приёмников, после чего точность определения координат с помощью бытовых навигаторов возросла как минимум в 5 раз. После отмены американцами режима селективного доступа точность определения координат с помощью простейшего гражданского GPS навигатора составляет от 5 до 20 метров (высота определяется с точностью до 10 метров) и зависит от условий приема сигналов в конкретной точке, количества видимых спутников и ряда других причин. Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников. Большинство современных GPS приёмников имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников. Военное применение навигации на базе NAVSTAR обеспечивает точность на порядок выше (до нескольких миллиметров) и обеспечивается зашифрованным P(Y) кодом. Информация в C/A коде (стандартной точности), передаваемая с помощью L1, распространяется свободно, бесплатно, без ограничений на использование.

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт. 24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. В настоящий момент на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.


Слежение за орбитальной группировкой осуществляется с главной управляющей станции (Master Control Station – MCS), которая находится на базе ВВС Шривер, шт. Колорадо, США. С нее осуществляется управление системой навигации GPS в мировом масштабе. База ВВС Шривер (Schriever) является местом размещения 50-го космического соединения США – подразделения командования воздушно-космических сил.

Наземная часть системы GPS состоит из десяти станций слежения, которые находятся на островах Кваджалейн и Гавайях в Тихом океане, на острове Вознесения, на острове Диего-Гарсия в Индийском океане, а также в Колорадо-Спрингс, в мысе Канаверел, шт. Флорида и т.д.. Количество наземных станций непрерывно растет, на всех станциях слежения используются приемники GPS для пассивного слежения за навигационными сигналами всех спутников. Информация со станций наблюдения обрабатывается на главной управляющей станции MCS и используется для обновления эфемерид спутников. Загрузка навигационных данных, состоящих из прогнозированных орбит и поправок часов, производится для каждого спутника каждые 24 часа.

Определение координат и GPS навигация.
Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным. Определение местоположения GPS-приёмника в пространстве осуществляется на базе алгоритма измерения расстояния от точки наблюдения до спутника. Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить. Приёмники работают в пассивном режиме и вычисляют свои координаты, но это совсем не означает, что координаты GPS-приёмника будут известны кому либо, кроме его владельца. Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот – L1=1575.42МГц и L2=1227.60МГц. Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.
Основная проблема при вычислении расстояния до спутника системы GPS связанна с синхронизацией часов на спутнике и в приемнике. Даже мизерная погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы, которые встроить в обычный GPS-приёмник невозможно. Чтобы скоррелировать временное рассогласование и избежать огромных ошибок в позиционировании, в систему GPS введен принцип избыточности для определения трехмерных координат на поверхности Земли. GPS-приёмник использует сигналы не трех, а как минимум четырех спутников и на основании вспомогательных сигналов вносит все необходимые коррективы в работу своих часов. Кроме навигационных сигналов, спутник непрерывно передает различную служебную информацию. GPS-приёмник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере, а также сведения о работоспособности спутника (так называемых “альманах”, содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Расстояние до навигационных спутников системы GPS обозначим как А, В и С. Допустим, что известно расстояние А до одного спутника. В данном случае координаты GPS-приемника определить нельзя, т.к. он может находится в любой точке сферы с радиусом А, описанной вокруг спутника. Если известна удаленность В приемника от второго спутника, то определение координат также не представляется возможным – объект находится где-то на окружности (показана синим цветом), которая является пересечением двух сфер. Известное расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены красными точками). Этого уже достаточно для однозначного определения координат GPS-приемника. Не смотря на то, что мы имеем две точки с координатами, только одна находится на поверхности Земли, а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной GPS навигации достаточно знать расстояния от приемника до трех спутников, но как мы уже говорили GPS-приемник, использует сигналы не трех, а как минимум четырех спутников и на основании вспомогательных сигналов вносит все необходимые коррективы для повышения точности навигации.
Недостатками GPS навигации является то, что при определённых условиях сигнал может не доходить до GPS-приёмника, поэтому практически невозможно определить своё точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле. Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приёма сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования. Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приёму сигналов GPS. Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS-приёмника, но и своим собственным глазам. Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Претенденты уже были. Благо, что у GPS есть альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), которые в перспективе должны получить широкое распространение.

Навигация это определение координатно-временных параметров объектов.

Первым эффективным средством навигации было определение местоположения по видимым небесным телам (солнце, звезды, луна). Другой простейший метод навигации это привязка к местности, т.е. определение местоположения относительно известных ориентиров (водонапорные башни , линии электропередач, шоссейные и железные дороги и др.).

Системы навигации и позиционирования предназначены для постоянного контроля за местонахождением (состоянием) объектов. В настоящее время существует два класса средств навигации и позиционирования: наземные и космические.

К наземным относят стационарные, возимые и переносные системы, комплексы, станции наземной разведки, иные средства навигации и позиционирования. Принцип их действия заключается в контроле радиоэфира посредством специальных антенн, подключаемых к сканирующим радиостанциям, и выделении радиосигналов , излучаемых радиопередатчиками объектов слежения или излучаемых самим комплексом (станцией) и отраженных от объекта слежения либо от специальной метки или кодового бортового датчика (КБД), размещенных на объекте. При использовании такого рода технических средств имеется возможность получить информацию о координатах местонахождения, направлении и скорости перемещения контролируемого объекта. При наличии на объектах слежения специальной метки или КБД устройства идентификации, подключаемые к системам, позволяют не только отмечать местоположение контролируемых объектов на электронной карте, но и соответствующим образом различать их.

Космические системы навигации и позиционирования разделяются на два типа.

Первый тип космических систем навигации и позиционирования отличает применение на мобильных объектах слежения специальных датчиков - приемников спутниковой навигационной системы типа ГЛОНАСС (Россия) или GPS (США). Навигационные приемники подвижных объектов слежения принимают от навигационной системы радиосигнал, который содержит координаты (эфемериды) спутников на орбите и отсчет времени. Процессор навигационного приемника, по данным от спутников (как минимум, от трех) рассчитывает географические широту и долготу его местонахождения (приемника). Эта информация (географические координаты) может быть визуализирована как на самом навигационном приемнике, при наличии устройства вывода информации (дисплея, монитора), так и в пункте слежения, при ее передаче от навигационного приемника подвижного объекта посредством радиосвязи (радиальной, конвенциональной, транкинговой, сотовой, спутниковой).

Второй тип космических систем навигации и позиционирования отличает сканирующий прием (пеленг) на орбите сигналов, поступающих от радиомаяков, установленных на объекте слежения. Спутник, принимающий сигналы от радиомаяков, как правило, сначала накапливает, а затем в определенной точке орбиты передает информацию об объектах слежения в наземный центр обработки данных. Время доставки информации при этом несколько увеличивается.


Спутниковые навигационные системы позволяют:

  • осуществлять непрерывный контроль и слежение за любыми подвижными объектами;
  • отображать на электронной карте диспетчера координаты, маршрут и скорость движения объектов контроля и слежения (с точностью определения координат и высоты над уровнем моря до 100 м, а в дифференциальном режиме - до 2…5 м);
  • оперативно реагировать на внештатные ситуации (изменение ожидаемых параметров на объекте контроля и слежения либо в его маршруте и графике движения, сигнал SOS и т. д.);
  • оптимизировать маршруты и графики движения объектов контроля и слежения.

В настоящее время функции специализированных систем навигации и позиционирования (автоматическое отслеживание текущего месторасположения абонентских аппаратов, терминалов связи с целью обеспечения роуминга и предоставления услуг связи) с относительной точностью могут выполнять спутниковые и сотовые (при наличии на базовых станциях аппаратуры определения местонахождения) системы радиосвязи.

Широкое внедрение систем навигации и позиционирования, повсеместная установка соответствующей аппаратуры в сетях сотовой связи России с целью определения и постоянного контроля местонахождения работающих передатчиков, патрулей, транспорта, иных объектов, представляющих интерес для органов внутренних дел, могло бы значительно расширить возможности правоохранительной деятельности.

Основной принцип определения местоположения с помощью спутниковых навигационных систем - использование спутников в качестве точек отсчета.

Для того, чтобы определить широту и долготу наземного приемника, приемник должен получать сигналы не менее чем от трех спутников и знать их координаты и расстояние от спутников до приемника (рис. 6.8). Координаты измеряются относительно центра земли, который имеет координату (0, 0, 0).

Расстояние от спутника до приемника вычисляется по измеренному времени распространения сигнала. Эти вычисления выполнить несложно, так как известно, что электромагнитные волны распространяются со скоростью света. Если известны координаты трех спутников и расстояния от них до приемника, то приемник может вычислить одно из двух возможных мест в пространстве (точки 1 и 2 рис. 6.8). Обычно приемник может определить, какая из этих двух точек действительная, так как одно значение местоположения имеет бессмысленное значение.

Рис. 6.8. Определение местоположения по сигналам от трех спутников

На практике, для исключения ошибки часов генератора, которое влияет на точность измерений разницы во времени, необходимо знать местоположение и расстояние до четвертого спутника (рис. 6.9).

Рис. 6.9. Определение местоположения по сигналам от четырех спутников

В настоящее время существуют и активно используются две спутниковые навигационные системы - ГЛОНАСС и GPS.

Спутниковые навигационные системы включают в себя три составные части (рис. 6.10):

  • космический сегмент , в который входит орбитальная группировка искусственных спутников Земли (иными словами, навигационных космических аппаратов);
  • сегмент управления, наземный комплекс управления (НКУ) орбитальной группировкой космических аппаратов;
  • аппаратура пользователей системы.

Рис. 6.10. Состав спутниковых навигационных систем

Космический сегмент системы ГЛОНАСС состоит из 24 навигационных космических аппаратов (НКА), находящихся на круговых орбитах высотой 19100 км, наклонением 64,5° и периодом обращения 11 ч 15 мин в трех орбитальных плоскостях (рис. 6.11). В каждой орбитальной плоскости размещаются по 8 спутников с равномерным сдвигом по широте 45°.

Космический сегмент навигационной системы GPS состоит из 24 основных НКА и 3 резервных. НКА находятся на шести круговых орбитах высотой около 20000 км, наклонением 55°, равномерно разнесенных по долготе через 60°.

Рис. 6.11. Орбиты спутников ГЛОНАСС и GPS

Сегмент наземного комплекса управления системы ГЛОНАСС выполняет следующие функции:

  • эфемеридное и частотно-временное обеспечение;
  • мониторинг радионавигационного поля;
  • радиотелеметрический мониторинг НКА;
  • командное и программное радиоуправление НКА.

Для синхронизации шкал времени различных спутников с необходимой точностью на борту НКА используются цезиевые стандарты частоты с относительной нестабильностью порядка 10 -13 с. На наземном комплексе управления используется водородный стандарт с относительной нестабильностью 10 -14 с. Кроме того, в состав НКУ входят средства коррекции шкал времени спутников относительно эталонной шкалы с погрешность 3-5 нс.

Наземный сегмент обеспечивает эфемеридное обеспечение спутников. Это означает, что на земле определяются параметры движения спутников и прогнозируются значения этих параметров на заранее определённый промежуток времени. Параметры и их прогноз закладываются в навигационное сообщение , передаваемое спутником наряду с передачей навигационного сигнала. Сюда же входят частотно-временные поправки бортовой шкалы времени спутника относительно системного времени. Измерение и прогноз параметров движения НКА производятся в Баллистическом центре системы по результатам траекторных измерений дальности до спутника и его радиальной скорости.

Аппаратура пользователей системы это радиотехнические устройства, предназначенные для приема и обработки радионавигационных сигналов навигационных космических аппаратов для определения пространственных координат, составляющих вектора скорости движения и поправки шкал времени потребителя глобальной навигационной спутниковой системы.

Приемник определяет местоположение потребителя, который отбирает из всех наблюдаемых спутников наиболее благоприятные в части обеспечения точности навигации. По дальностям до выбранных спутников он определяет долготу, широту и высоту потребителя, а также параметры его движения: направление и скорость. Полученные данные отображаются на дисплее в виде цифровых координат, либо отображаться на карте, предварительно скопированной в приемник.

Приемники спутниковых навигационных систем являются пассивными, т.е. они не излучают сигналы и не имеют обратного канала связи. Это позволяет иметь неограниченного количество потребителей навигационных систем связи.

Большое распространение в настоящее время получили системы мониторинга движения объектов на основе спутниковых навигационных систем. Структура такой системы показана на рис. 6.12.

Рис. 6.12. Структура системы мониторинга

Навигационные приемника, установленные на объектах слежения, принимают сигналы от спутников и вычисляют свои координаты. Но, так как навигационные приемники это пассивные устройства, то в системе необходимо предусмотреть систему передачи вычисленных координат в центр мониторинга. В качестве средств передачи данных о координатах объекта наблюдения могут служить УКВ-радиомодемы, GSM/GPRS/EDGE-модемы (сети 2G), сети третьего поколения, работающие по протоколам UMTS/HSDPA, CDMA-модемы, системы спутниковых систем связи и др.

Центр мониторинга спутниковой навигационно-мониторинговой системы предназначен для наблюдения за объектами, на которых установлено (содержится) навигационно-связное оборудование с целью контроля отдельных его параметров (местоположения, скорости, направления движения) и принятия решения на те или иные действия.

В центре мониторинга содержатся программно-технические средства обработки информации, обеспечивающие:

  • прием, обработку и хранение информации, поступающей от объектов наблюдения;
  • отображение на электронной карте местности информации о местоположении объектов наблюдения.

Навигационно-мониторинговой системой органов внутренних дел решаются следующие задачи:

  • обеспечение автоматизированного контроля персоналом дежурной части за расстановкой экипажей транспортных средств;
  • обеспечение персонала дежурной части информацией о местонахождении транспортных средств для принятия управленческих решений при организации оперативного реагирования на происшествия в зоне ответственности;
  • отображение в графическом формате информации о позиционировании транспортных средств и иной служебной информации на автоматизированное рабочее место оператор;
  • формирование и хранение архива о маршрутах движения экипажей транспортных средств в период несения ими службы;
  • выдача статистической отчетности о выполнении норм обязательного выставления сил и средств в течение дежурной смены, сводных параметрах эффективности использования сил и средств, показателях контроля зон ответственности.

Для обеспечения высокой надежности и достоверности передачи мониторинговой информации от бортового оборудования автотранспорта подразделений МВД России в дежурные чисти в составе системы необходимо использовать резервный канал передачи данных, в качестве которого можно использовать